Solveeit Logo

Question

Question: A circuit is made up of a resistance \(1\Omega\) and inductance 0.01 H. An alternating voltage of 20...

A circuit is made up of a resistance 1Ω1\Omega and inductance 0.01 H. An alternating voltage of 200 V at 50 Hz is connected then the phase difference between the current and the voltage in the circuit is

A

tan1(π)\tan^{- 1}(\pi)

B

tan1(π2)\tan^{- 1}\left( \frac{\pi}{2} \right)

C

tan1(π4)\tan^{- 1}\left( \frac{\pi}{4} \right)

D

tan1(π3)\tan^{- 1}\left( \frac{\pi}{3} \right)

Answer

tan1(π)\tan^{- 1}(\pi)

Explanation

Solution

: tanφ=(XLR)\tan\varphi = \left( \frac{X_{L}}{R} \right)

XL=ωL=(2πυL)=(2π)(50)(0.01)=πΩX_{L} = \omega L = (2\pi\upsilon L) = (2\pi)(50)(0.01) = \pi\OmegaAlso,

R=1ΩR = 1\Omega

φ=tan1(π)\therefore\varphi = \tan^{- 1}(\pi)