Solveeit Logo

Question

Question: A circuit has a section ABC as shown in figure. If the potentials at points A, B and C are V1, V2 an...

A circuit has a section ABC as shown in figure. If the potentials at points A, B and C are V1, V2 and V3 respectively. The potential at point O is

A

2σ1σ2σ1+σ2\frac{2\sigma_{1}\sigma_{2}}{\sigma_{1} + \sigma_{2}}

B

[V1R1+V2R2+V3R3][1R1+1R2+1R3]\left[ \frac { \mathrm { V } _ { 1 } } { \mathrm { R } _ { 1 } } + \frac { \mathrm { V } _ { 2 } } { \mathrm { R } _ { 2 } } + \frac { \mathrm { V } _ { 3 } } { \mathrm { R } _ { 3 } } \right] \left[ \frac { 1 } { \mathrm { R } _ { 1 } } + \frac { 1 } { \mathrm { R } _ { 2 } } + \frac { 1 } { \mathrm { R } _ { 3 } } \right] Ao\overset{o}{A}

C

Zero

D

9.4×10189.4 \times 10^{18}

Answer

\left[ \frac { \mathrm { V } _ { 1 } } { \mathrm { R } _ { 1 } } + \frac { \mathrm { V } _ { 2 } } { \mathrm { R } _ { 2 } } + \frac { \mathrm { V } _ { 3 } } { \mathrm { R } _ { 3 } } \right] \left[ \frac { 1 } { \mathrm { R } _ { 1 } } + \frac { 1 } { \mathrm { R } _ { 2 } } + \frac { 1 } { \mathrm { R } _ { 3 } } \right]$$\overset{o}{A}

Explanation

Solution

: Applying junction rule to O

I1I2I3=0- I_{1} - I_{2} - I_{3} = 0

i.e., I1+I2+I3=0I_{1} + I_{2} + I_{3} = 0 …(i)

Let, V0V_{0}be the potential at point O.

By Ohm’s law for resistances R1,R2R_{1},R_{2}

and R3R_{3}respectively, we get

(V0V1)=I1R1;(V0V2)=I2R2(V_{0} - V_{1}) = I_{1}R_{1};(V_{0} - V_{2}) = I_{2}R_{2}

and,(V0V3)=I3R3(V_{0} - V_{3}) = I_{3}R_{3}

or I1=(V0V1)R1;I2=(V0V2)R2;I3=(V0V3)R3I_{1} = \frac{(V_{0} - V_{1})}{R_{1}};I_{2} = \frac{(V_{0} - V_{2})}{R_{2}};I_{3} = \frac{(V_{0} - V_{3})}{R_{3}}

So substituting these values of I1,I2I_{1},I_{2} and I3I_{3} in eqn. (i), we get,

V0[1R1+1R2+1R3][V1R1+V2R2+V3R3]=0V_{0}\left\lbrack \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} \right\rbrack - \left\lbrack \frac{V_{1}}{R_{1}} + \frac{V_{2}}{R_{2}} + \frac{V_{3}}{R_{3}} \right\rbrack = 0

V0=[V1R1+V2R2+V3R3][1R1+1R2+1R3]1V_{0} = \left\lbrack \frac{V_{1}}{R_{1}} + \frac{V_{2}}{R_{2}} + \frac{V_{3}}{R_{3}} \right\rbrack ⥂ \left\lbrack \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} \right\rbrack^{- 1}