Question
Question: A circuit has a section ABC as shown in figure. If the potentials at points A, B and C are V1, V2 an...
A circuit has a section ABC as shown in figure. If the potentials at points A, B and C are V1, V2 and V3 respectively. The potential at point O is

σ1+σ22σ1σ2
[R1V1+R2V2+R3V3][R11+R21+R31] Ao
Zero
9.4×1018
\left[ \frac { \mathrm { V } _ { 1 } } { \mathrm { R } _ { 1 } } + \frac { \mathrm { V } _ { 2 } } { \mathrm { R } _ { 2 } } + \frac { \mathrm { V } _ { 3 } } { \mathrm { R } _ { 3 } } \right] \left[ \frac { 1 } { \mathrm { R } _ { 1 } } + \frac { 1 } { \mathrm { R } _ { 2 } } + \frac { 1 } { \mathrm { R } _ { 3 } } \right]$$\overset{o}{A}
Solution
: Applying junction rule to O
−I1−I2−I3=0
i.e., I1+I2+I3=0 …(i)
Let, V0be the potential at point O.
By Ohm’s law for resistances R1,R2
and R3respectively, we get
(V0−V1)=I1R1;(V0−V2)=I2R2

and,(V0−V3)=I3R3
or I1=R1(V0−V1);I2=R2(V0−V2);I3=R3(V0−V3)
So substituting these values of I1,I2 and I3 in eqn. (i), we get,
V0[R11+R21+R31]−[R1V1+R2V2+R3V3]=0
V0=[R1V1+R2V2+R3V3]⥂[R11+R21+R31]−1