Solveeit Logo

Question

Question: A circle whose centre coincides with the origin having radius a cuts the X-axis at A and B . If P an...

A circle whose centre coincides with the origin having radius a cuts the X-axis at A and B . If P and Q are two points on the circle whose parametric angles differ by 2q, then the locus of the intersection point of AP and BQ, is –

A

x2 – y2 + 2ay tan q = a2

B

x2 + y2 + 2ay cot q = a2

C

x2 + y2 – 2ay tan q = a2

D

x2 – y2 – 2ay tan q = a2

Answer

x2 + y2 – 2ay tan q = a2

Explanation

Solution

Let P ŗ (a cos a, a sin a) and Q ŗ (a cos b, a sin b)

where b – a = 2q

Also, A ŗ (a, 0) and B ŗ (–a, 0)

If R(h, k) be the intersection point of AP and BQ, then

slope of AR = slope of AP [Q R lies on AP]

i.e. sinαcosα1\frac { \sin \alpha } { \cos \alpha - 1 }

i.e. tan(α2)\left( \frac { \alpha } { 2 } \right) = … (1)

and slope of BR = slope of BQ [Q R lies on BQ]

i.e. sinβcosβ+1\frac { \sin \beta } { \cos \beta + 1 }

i.e. tan(β2)\left( \frac { \beta } { 2 } \right) = … (2)

Since, b – a = 2q, we have

β2\frac { \beta } { 2 }α2\frac { \alpha } { 2 } = q

i.e. tan(β2)tan(α2)1+tan(β2)tan(α2)\frac { \tan \left( \frac { \beta } { 2 } \right) - \tan \left( \frac { \alpha } { 2 } \right) } { 1 + \tan \left( \frac { \beta } { 2 } \right) \tan \left( \frac { \alpha } { 2 } \right) }= tan q [from equations (1) and (2)]

i.e. = tan q

i.e. h2 + k2 – 2ak tan q = a2

Hence, the locus of R is

x2 + y2 – 2ay tan q = a2 .