Solveeit Logo

Question

Question: A circle touches x-axis and cuts off a chord of length 2l from y-axis. The locus of the centre of th...

A circle touches x-axis and cuts off a chord of length 2l from y-axis. The locus of the centre of the circle is.

A

A straight line

B

A circle

C

An ellipse

D

A hyperbola

Answer

A hyperbola

Explanation

Solution

If the circle x2+y2+2gx+2fy+c=0x ^ { 2 } + y ^ { 2 } + 2 g x + 2 f y + c = 0 touches the x-axis,

then f=g2+f2cg2=c- f = \sqrt { g ^ { 2 } + f ^ { 2 } - c } \Rightarrow g ^ { 2 } = c .....(i)

and cuts a chord of length 2l from y-axis

2f2c=2lf2c=l2\Rightarrow 2 \sqrt { f ^ { 2 } - c } = 2 l \Rightarrow f ^ { 2 } - c = l ^ { 2 } ….(ii)

Subtracting (i) from (ii), we get f2g2=l2f ^ { 2 } - g ^ { 2 } = l ^ { 2 } .

Hence the locus is y2x2=l2y ^ { 2 } - x ^ { 2 } = l ^ { 2 }, which is obviously a hyperbola.