Solveeit Logo

Question

Mathematics Question on Conic sections

A circle of radius 2 unit passes through the vertex and the focus of the parabola y2 = 2x and touches the parabola y=(x14)2+α,y=\left (x−\frac{1}{4}\right)^2+α, where α>0α > 0. Then (4α8)2(4α – 8)^2 is equal to ___________.

Answer

The correct answer is 63

Fig.

Assuming the equation of circle is
x(x12)+y2+λy=0x(x-\frac{1}{2})+y^2+λy = 0
x2+y212x+λy=0⇒ x^2+y^2-\frac{1}{2}x+λy = 0
Radius = \sqrt{\frac{1}{16}+\frac{λ^2}{4}}$$= 2
λ2=634⇒ λ^2 = \frac{63}{4}
(x14)2+(y+λ2)2=4⇒ (x-\frac{1}{4})^2+(y+\frac{λ}{2})^2 = 4
As this circle and parabola are yα=(x14)2y-α = (x-\frac{1}{4})^2 touching each other.
Hence,
α=λ2+2α = - \frac{λ}{2}+2
(α2)2=λ24=6316⇒ (α-2)^2 = \frac{λ^2}{4} = \frac{63}{16}
(4α8)2⇒ (4α-8)^2
= 63