Solveeit Logo

Question

Question: A circle of constant radius 5 units passes through the origin $O$ and cuts the axes at $A$ and $B$. ...

A circle of constant radius 5 units passes through the origin OO and cuts the axes at AA and BB. Then the locus of the foot of the perpendicular from OO to ABAB is (x2+y2)2(1x2+1y2)=k(x^2 + y^2)^2(\frac{1}{x^2}+\frac{1}{y^2}) = k, then kk is equal to

Answer

100

Explanation

Solution

The general equation of a circle passing through the origin is x2+y2+2gx+2fy=0x^2 + y^2 + 2gx + 2fy = 0. The radius is given as 5, so g2+f2=52=25g^2+f^2 = 5^2 = 25. The circle cuts the x-axis at A(2g,0)A(-2g, 0) and the y-axis at B(0,2f)B(0, -2f). The equation of line AB is x2g+y2f=1\frac{x}{-2g} + \frac{y}{-2f} = 1, which simplifies to fx+gy+2fg=0fx + gy + 2fg = 0. Let (h,k)(h, k) be the foot of the perpendicular from O(0,0)O(0,0) to AB. The line OR (where R is (h,k)(h, k)) is perpendicular to AB. The slope of AB is f/g-f/g. The slope of OR is k/hk/h. Since OR \perp AB, (k/h)(f/g)=1(k/h)(-f/g) = -1, so kf=hgkf = hg. The distance OR=f(0)+g(0)+2fgf2+g2=2fg5OR = \frac{|f(0) + g(0) + 2fg|}{\sqrt{f^2+g^2}} = \frac{|2fg|}{5}. Also, OR2=h2+k2OR^2 = h^2+k^2. So, h2+k2=4f2g225h^2+k^2 = \frac{4f^2g^2}{25}, which means 25(h2+k2)=4f2g225(h^2+k^2) = 4f^2g^2. From kf=hgkf=hg, we have f2g2=k2f2g2f2=k2f2h2k2=h2k2f^2g^2 = k^2f^2 \cdot \frac{g^2}{f^2} = k^2f^2 \cdot \frac{h^2}{k^2} = h^2k^2. Substituting f2g2=h2k2f^2g^2 = h^2k^2 into 25(h2+k2)=4f2g225(h^2+k^2) = 4f^2g^2: 25(h2+k2)=4h2k225(h^2+k^2) = 4h^2k^2. This step seems to be wrong in the explanation. Let's correct it.

From kf=hgkf=hg, we have f2=h2g2k2f^2 = \frac{h^2g^2}{k^2}. Substitute this into g2+f2=25g^2+f^2=25: g2+h2g2k2=25    g2(k2+h2k2)=25    g2=25k2h2+k2g^2 + \frac{h^2g^2}{k^2} = 25 \implies g^2(\frac{k^2+h^2}{k^2}) = 25 \implies g^2 = \frac{25k^2}{h^2+k^2}. Similarly, from g2=k2f2h2g^2 = \frac{k^2f^2}{h^2}, substitute into g2+f2=25g^2+f^2=25: k2f2h2+f2=25    f2(k2+h2h2)=25    f2=25h2h2+k2\frac{k^2f^2}{h^2} + f^2 = 25 \implies f^2(\frac{k^2+h^2}{h^2}) = 25 \implies f^2 = \frac{25h^2}{h^2+k^2}.

Now substitute f2f^2 and g2g^2 into 25(h2+k2)=4f2g225(h^2+k^2) = 4f^2g^2: 25(h2+k2)=4(25h2h2+k2)(25k2h2+k2)25(h^2+k^2) = 4 \left(\frac{25h^2}{h^2+k^2}\right) \left(\frac{25k^2}{h^2+k^2}\right) 25(h2+k2)=2500h2k2(h2+k2)225(h^2+k^2) = \frac{2500h^2k^2}{(h^2+k^2)^2} (h2+k2)3=100h2k2(h^2+k^2)^3 = 100h^2k^2. Dividing by h2k2h^2k^2: (h2+k2)3h2k2=100\frac{(h^2+k^2)^3}{h^2k^2} = 100 (h2+k2)2(h2+k2h2k2)=100(h^2+k^2)^2 \left(\frac{h^2+k^2}{h^2k^2}\right) = 100 (h2+k2)2(1k2+1h2)=100(h^2+k^2)^2 \left(\frac{1}{k^2}+\frac{1}{h^2}\right) = 100. Replacing (h,k)(h,k) with (x,y)(x,y): (x2+y2)2(1x2+1y2)=100(x^2+y^2)^2(\frac{1}{x^2}+\frac{1}{y^2}) = 100. Comparing with the given equation, k=100k=100.