Solveeit Logo

Question

Question: A circle is described on a focal chord as diameter; if ‘m’ be the tangent of the inclination of the ...

A circle is described on a focal chord as diameter; if ‘m’ be the tangent of the inclination of the chord to the axis, prove that the equation to the circle is
x22ax(1+2m2)+y24aym3a2=0{{x}^{2}}-2ax\left( 1+\dfrac{2}{{{m}^{2}}} \right)+{{y}^{2}}-\dfrac{4ay}{m}-3{{a}^{2}}=0

Explanation

Solution

Hint: Take the end points of chords as (at12,2at1),(at22,2at2)\left( at_{1}^{2},2a{{t}_{1}} \right),\left( at_{2}^{2},2a{{t}_{2}} \right) then get the slope and use the formula (xx1)(xx2)+(yy1)(yy2)=0\left( x-{{x}_{1}} \right)\left( x-{{x}_{2}} \right)+\left( y-{{y}_{1}} \right)\left( y-{{y}_{2}} \right)=0 to get the equation of circle. After doing some further simplifications you will get the desired result.

Complete step-by-step solution -

We are given a focal chord as diameter; and ‘n’ be the target of the inclination of the chord to the axis.
Let assume that the end points of the focal chord be P(at12,2at1) P\left( at_{1}^{2},2a{{t}_{1}} \right)\text{ } and Q(at22,2at2)Q\left( at_{2}^{2},2a{{t}_{2}} \right)
If the points are (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2),\left( {{x}_{2}},{{y}_{2}} \right), then its slope will be y2y1x2x1\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}} .
Now using the above formula, the slope PQ will be,
m=2a(t2t1)a(t22t12)m=\dfrac{2a\left( {{t}_{2}}-{{t}_{1}} \right)}{a\left( t_{2}^{2}-t_{1}^{2} \right)}
m=2(t2t1)(t2t1)(t2+t1)m=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)}
On further simplification we get,
m=2t1+t2m=\dfrac{2}{{{t}_{1}}+{{t}_{2}}}
So, we can write,
t1+t2=2m................(i){{t}_{1}}+{{t}_{2}}=\dfrac{2}{m}................\left( i \right)
If the endpoints of diameter of the circle is (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) then the equation of circle will be,
(xx1)(xx2)+(yy1)(yy2)=0\left( x-{{x}_{1}} \right)\left( x-{{x}_{2}} \right)+\left( y-{{y}_{1}} \right)\left( y-{{y}_{2}} \right)=0
Now we will apply the formula to get the equation of circle of points (at12,2at1),(at22,2at2)\left( at_{1}^{2},2a{{t}_{1}} \right),\left( at_{2}^{2},2a{{t}_{2}} \right)we get,
(xat12)(xat22)+(y2at1)(y2at2)=0\left( x-at_{1}^{2} \right)\left( x-at_{2}^{2} \right)+\left( y-2a{{t}_{1}} \right)\left( y-2a{{t}_{2}} \right)=0
By further simplification we get,
x2ax(t12+t22)+a2t12t22+y22ay(t1+t2)+4a2t1t2=0{{x}^{2}}-ax\left( t_{1}^{2}+t_{2}^{2} \right)+{{a}^{2}}t_{1}^{2}t_{2}^{2}+{{y}^{2}}-2ay\left( {{t}_{1}}+{{t}_{2}} \right)+4{{a}^{2}}{{t}_{1}}{{t}_{2}}=0
Now replacing t12+t22t_{1}^{2}+t_{2}^{2} by (t1+t2)22t1t2{{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-2{{t}_{1}}{{t}_{2}}, so we can write the above equation as,
{{x}^{2}}-ax\left\\{ {{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-2{{t}_{1}}{{t}_{2}} \right\\}+{{a}^{2}}t_{1}^{2}t_{2}^{2}+{{y}^{2}}-2ay\left( {{t}_{1}}+{{t}_{2}} \right)+4{{a}^{^{2}}}{{t}_{1}}{{t}_{2}}=0
Now as we know a certain condition that t1t2=1{{t}_{1}}{{t}_{2}}=-1 for focal chord, so the above equation can be written as,
{{x}^{2}}-ax\left\\{ {{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}+2 \right\\}+{{a}^{2}}+{{y}^{2}}-2ay\left( {{t}_{1}}+{{t}_{2}} \right)-4{{a}^{^{2}}}=0
On further simplification,
{{x}^{2}}-ax\left\\{ {{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}+2 \right\\}+{{y}^{2}}-2ay\left( {{t}_{1}}+{{t}_{2}} \right)-3{{a}^{^{2}}}=0
Now using equation (i) in the above equation, we get
{{x}^{2}}-ax\left\\{ \dfrac{4}{{{m}^{2}}}+2 \right\\}+{{y}^{2}}-2ay\left( \dfrac{2}{m} \right)-3{{a}^{2}}=0
On further simplification we can write it as,
x22ax(1+2m2)+y24aym3a2=0{{x}^{2}}-2ax\left( 1+\dfrac{2}{{{m}^{2}}} \right)+{{y}^{2}}-\dfrac{4ay}{m}-3{{a}^{2}}=0
Hence proved.

Note: Actually the (at12,2at1)\left( at_{1}^{2},2a{{t}_{1}} \right) is a parametric point of parabola y2=4x{{y}^{2}}=4x which is often used in these kinds of problems. Also be careful about the calculation to avoid any errors.