Solveeit Logo

Question

Question: A circle is concentric with the circle \(x ^ { 2 } + y ^ { 2 } - 6 x + 12 y + 15 = 0\) and has area...

A circle is concentric with the circle

x2+y26x+12y+15=0x ^ { 2 } + y ^ { 2 } - 6 x + 12 y + 15 = 0 and has area double of its area. The equation of the circle is.

A

x2+y26x+12y15=0x ^ { 2 } + y ^ { 2 } - 6 x + 12 y - 15 = 0

B

x2+y26x+12y+15=0x ^ { 2 } + y ^ { 2 } - 6 x + 12 y + 15 = 0

C

x2+y26x+12y+45=0x ^ { 2 } + y ^ { 2 } - 6 x + 12 y + 45 = 0

D

None of these

Answer

x2+y26x+12y15=0x ^ { 2 } + y ^ { 2 } - 6 x + 12 y - 15 = 0

Explanation

Solution

Equation of circle concentric to given circle is

x2+y26x+12y+k=0x ^ { 2 } + y ^ { 2 } - 6 x + 12 y + k = 0 ….(i)

Radius of circle (i) =2= \sqrt { 2 } (radius of given circle)

9+36k=29+3615\Rightarrow \sqrt { 9 + 36 - k } = \sqrt { 2 } \sqrt { 9 + 36 - 15 }

45k=60k=15\Rightarrow 45 - k = 60 \Rightarrow k = - 15

Hence the required equation of circle is

x2+y26x+12y15=0x ^ { 2 } + y ^ { 2 } - 6 x + 12 y - 15 = 0.