Solveeit Logo

Question

Question: A circle has its centre in the first quadrant and passes through the points of intersection of the l...

A circle has its centre in the first quadrant and passes through the points of intersection of the lines ‘x = 2’ and ‘y = 3’. If it makes intercepts of 3 and 4 units on these lines respectively, its equation is
(a) x2+y23x5y+8=0{{x}^{2}}+{{y}^{2}}-3x-5y+8=0
(b) x2+y24x6y+13=0{{x}^{2}}+{{y}^{2}}-4x-6y+13=0
(c) x2+y26x8y+23=0{{x}^{2}}+{{y}^{2}}-6x-8y+23=0
(d)x2+y28x9y+30=0{{x}^{2}}+{{y}^{2}}-8x-9y+30=0

Explanation

Solution

Hint : First consider the centre of the circle as (a, b) so the general equation of the circle will be x2+y22ax2by+c=0{{x}^{2}}+{{y}^{2}}-2ax-2by+c=0, then put the values of x,yx,y and put it back to the main equation and substitute the value of ‘c’ in terms of ‘a’ and ‘b’ . Then use the x-intercept and then find the values of ‘b’. Similarly using y-intercept find the value of ‘a’.

Complete step by step solution :
Now, let’s consider a circle with centre be (a, b).
So the equation of circle will be,
x2+y22ax2by+c=0...........(1){{x}^{2}}+{{y}^{2}}-2ax-2by+c=0...........(1)
In the question it is given that the circle passes through (2,3).
Therefore, substituting x=2 and y=3 respectively in the equation (1) we get,
22+322a×22b×3+c=0{{2}^{2}}+{{3}^{2}}-2a\times 2-2b\times 3+c=0
134a6b+c=0 c=4a+6b13 \begin{aligned} & \Rightarrow 13-4a-6b+c=0 \\\ & \therefore c=4a+6b-13 \\\ \end{aligned}
So now let’s put back value of c in the equation (1) we get,
x2+y22ax2by+(4a+6b13)=0.........(2){{x}^{2}}+{{y}^{2}}-2ax-2by+(4a+6b-13)=0.........(2)
Now we will find intercept on line x=2, y=3 respectively.
By substituting x=2 in the equation (1) we get,
4+y24a2by+(4a+6b13)=0..........(3)4+{{y}^{2}}-4a-2by+(4a+6b-13)=0..........(3)
In the equation (2) let y1{{y}_{1}},y2{{y}_{2}}be the roots. So, from equation (3),
Sum of the roots will be,
y1+y2=2b........(4){{y}_{1}}+{{y}_{2}}=2b........(4)
Product of the roots will be,
y1y2=6b9..........(5){{y}_{1}}{{y}_{2}}=6b-9..........(5)
Now as we know that length of intercept is (y1y2{{y}_{1}}-{{y}_{2}}), so we will use the identity which is,
ab=(a+b)24aba-b=\sqrt{{{\left( a+b \right)}^{2}}-4ab}
y1y2{{y}_{1}}-{{y}_{2}}=(y1+y2)24y1y2\sqrt{{{\left( {{y}_{1}}+{{y}_{2}} \right)}^{2}}-4{{y}_{1}}{{y}_{2}}}
Now we will substitute the values of (y1+y2)\left( {{y}_{1}}+{{y}_{2}} \right)and y1y2{{y}_{1}}{{y}_{2}}to find the value of values of ‘b’ as we are given the value of y1y2{{y}_{1}}-{{y}_{2}}which is 3.
So,
32=(y1+y2)24y1y2{{3}^{2}}={{\left( {{y}_{1}}+{{y}_{2}} \right)}^{2}}-4{{y}_{1}}{{y}_{2}}
Substituting the values of equation (4) and (5), we get
9=(2b)24(6b9)\Rightarrow 9={{\left( 2b \right)}^{2}}-4\left( 6b-9 \right)
4b224b+27=0\Rightarrow 4{{b}^{2}}-24b+27=0
We will solve the quadratic equation. Now by splitting the middle term, we get
4b26b18b+27=0\Rightarrow 4{{b}^{2}}-6b-18b+27=0
2b(2b3)9(2b3)=0\Rightarrow 2b(2b-3)-9(2b-3)=0

& \Rightarrow (2b-9)(2b-3)=0 \\\ & \Rightarrow 2b-9=0,2b-3=0 \\\ & \Rightarrow 2b=9,2b=3 \\\ & \Rightarrow b=\dfrac{9}{2},b=\dfrac{3}{2} \\\ \end{aligned}$$ Hence the values of b is $\dfrac{9}{2}$ or $\dfrac{3}{2}$. By substituting the value of y =3 in the equation (2) we get, ${{x}^{2}}+9-2ax-6b+(4a+6b-13)=0$ ${{x}^{2}}-2ax+4a-4=0.........(6)$ In equation (6) let ${{x}_{1}}$,${{x}_{2}}$ be the roots , Sum of the roots will be, ${{x}_{1}}+{{x}_{2}}=2a......(7)$ Product of the roots will be ${{x}_{1}}{{x}_{2}}=(4a-4).........(8)$ Now as we know the length of intercept is $({{x}_{1}}-{{x}_{2}})$, so we will use the identity which is , $a-b=\sqrt{{{\left( a+b \right)}^{2}}-4ab}$ $$({{x}_{1}}-{{x}_{2}})=\sqrt{{{({{x}_{1}}+{{x}_{2}})}^{2}}-4{{x}_{1}}{{x}_{2}}}$$ Now we will substitute $({{x}_{1}}+{{x}_{2}})$and ${{x}_{1}}{{x}_{2}}$to find the value or values of a as we are given the value of $({{x}_{1}}-{{x}_{2}})=4$ So, $4={{({{x}_{1}}+{{x}_{2}})}^{2}}-4{{x}_{1}}{{x}_{2}}$ $\Rightarrow 4={{(2a)}^{2}}-4(4a-4)$ $\Rightarrow 4={{a}^{2}}-(4a-4)$ $\Rightarrow {{a}^{2}}-4a=0$ $\Rightarrow a(a-4)=0$ Here the value of a is 0 or 4. So now there are 4 such sets of equation can be made by the sets of values of (a,b) which are $$\left( 0,\dfrac{3}{2} \right),\left( 0,\dfrac{9}{2} \right),\left( 4,\dfrac{3}{2} \right)$$ and $\left( 4,\dfrac{9}{2} \right)$. For $\left( 0,\dfrac{3}{2} \right)$ we will substitute in equation (3), we get ${{x}^{2}}+{{y}^{2}}-2ax-2by+(4a+6b-13)=0$ ${{x}^{2}}+{{y}^{2}}-2x(0)-2y\times \dfrac{3}{2}+(4(0)+6\times \dfrac{3}{2}-13)=0$ $\therefore {{x}^{2}}+{{y}^{2}}-3y+(-4)=0$ For $\left( 0,\dfrac{9}{2} \right)$ we will substitute in equation (3), we get ${{x}^{2}}+{{y}^{2}}-2ax-2by+(4a+6b-13)=0$ ${{x}^{2}}+{{y}^{2}}-2x(0)-2y\times \dfrac{9}{2}+(4(0)+6\times \dfrac{9}{2}-13)=0$ $\therefore {{x}^{2}}+{{y}^{2}}-9y+14=0$ For $\left( 4,\dfrac{3}{2} \right)$ we will substitute in equation (3), we get ${{x}^{2}}+{{y}^{2}}-2ax-2by+(4a+6b-13)=0$ ${{x}^{2}}+{{y}^{2}}-2x(4)-2y\times \dfrac{3}{2}+(4(4)+6\times \dfrac{3}{2}-13)=0$ $\therefore {{x}^{2}}+{{y}^{2}}-8x-3y+12=0$ For $\left( 4,\dfrac{9}{2} \right)$ we will substitute in equation (3), we get ${{x}^{2}}+{{y}^{2}}-2ax-2by+(4a+6b-13)=0$ ${{x}^{2}}+{{y}^{2}}-2x(4)-2y\times \dfrac{9}{2}+(4(4)+6\times \dfrac{9}{2}-13)=0$ $\therefore {{x}^{2}}+{{y}^{2}}-8x-9y+30=0$ Only one equation of the pair$\left( 4,\dfrac{9}{2} \right)$ is available in the option. So, the answer is option (d). **Note** : Here the difficulty or confusion a student can face is putting the value of c back into the equation and also selecting the correct values of a and b.