Solveeit Logo

Question

Mathematics Question on Conic sections

A circle cuts a chord of length 4a4a on the x-axis and passes through a point on the y-axis, distant 2b2b from the origin. Then the locus of the centre of this circle, is :

A

A hyperbola

B

A parabola

C

A straight line

D

An ellipse

Answer

A parabola

Explanation

Solution

Let equation of circle is x2+y2+2fx+2fy+e=0,x^2 + y^2 + 2fx + 2fy +e = 0 , it passes through (0,2b)(0, 2b)
  0+4b2+2g×0+4?+c=0\Rightarrow \; 0 + 4b^2 + 2g \times 0 + 4? + c = 0
  4b2+4f+c=0\Rightarrow \; 4b^2 + 4f + c = 0 ...(i)
2g2c=4a2 \sqrt{g^2 -c} = 4a ....(ii)
g2c=4a2    c=(g24a2)g^2 - c = 4a^2 \; \Rightarrow \; c = (g^2 - 4a^2)
Putting in equation (1)
  4b2+4f+g24a2=0\Rightarrow \; 4b^2 + 4f + g^2 - 4a^2 = 0
  x2+4y+4(b2a2)=0\Rightarrow \; x^2 +4y +4 (b^2 -a^2) = 0 it represent a parabola.