Solveeit Logo

Question

Mathematics Question on Areas of Sector and Segment of a Circle

A chord of a circle of radius 15 cm subtends an angle of 60° at the centre. Find the areas of the corresponding minor and major segments of the circle. (Use π=3.14\pi = 3.14 and 3=1.73\sqrt3 = 1.73)

Answer

A chord of a circle of radius 15 cm subtends an angle of 60° at the centre.

Radius (r) of circle = 1515 cm
Area of sector OPRQOPRQ = 60°360°×πr2\frac{60°}{360°} \times \pi r^2
= 16×3.14×(15)2\frac{1}{6} \times 3.14 \times (15)^2
= 117.75cm2117.75\,cm^2
In OPQ∆OPQ,
OPQ=OQP∠OPQ = ∠OQP (As OP=OQOP = OQ)
OPQ+OQP+POQ=180°∠OPQ + ∠OQP + ∠POQ = 180°
2OPQ=120°2∠OPQ = 120°
OPQ=60°∠OPQ = 60°
OPQ∆OPQ is an equilateral triangle.
Area of OPQ∆OPQ = 34×(side)2\frac{\sqrt3 } 4 \times (side)^2
= 34×(15)2\frac{\sqrt3 } 4 \times (15)^2

= 22534cm2\frac{225\sqrt3 } 4 cm^2

= 56.25356.25 \sqrt3
= 97.3125cm297. 3125 \, cm^2
Area of segment PRQPRQ = Area of sector OPRQOPRQ − Area of OPQ∆OPQ
= 117.7597.3125117.75 − 97.3125 = 20.437520.4375 cm2cm^2
Area of major segment PSQPSQ = Area of circle − Area of segment PRQPRQ
= π(15)2\-20.4375\pi (15)^2 \- 20.4375
= 3.14×22520.43753.14 \times 225 - 20.4375
= 706.520.4375706.5 - 20.4375
= 686.0625686. 0625 cm2cm^2

So, the answer is 686.0625 cm2686. 0625\ cm^2.