Solveeit Logo

Question

Mathematics Question on Circles

A chord of a circle of radius 14 cm subtends an angle of 90° at the centre. Find the area of the corresponding minor and major segments of the circle.

Answer

Given:
- Radius of the circle r=14cmr = 14 \, \text{cm}
- Angle subtended by the chord at the center θ=90\theta = 90^\circ

  1. Area of the sector formed by the chord:
    Area of sector=θ360×πr2=90360×π×142=14×π×196=49πsq cm\text{Area of sector} = \frac{\theta}{360^\circ} \times \pi r^2 = \frac{90^\circ}{360^\circ} \times \pi \times 14^2 = \frac{1}{4} \times \pi \times 196 = 49\pi \, \text{sq cm}
  2. Area of the triangle formed by the chord and the center of the circle: The two radii and the chord form an isosceles triangle with a vertex angle of 9090^\circ. The area of the triangle is given by: Area of triangle=12×base×height=12×14×14=98sq cm\text{Area of triangle} = \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times 14 \times 14 = 98 \, \text{sq cm}
  3. Area of the minor segment:
    Area of minor segment=Area of sectorArea of triangle=49π98\text{Area of minor segment} = \text{Area of sector} - \text{Area of triangle} = 49\pi - 98 Approximating π=3.14\pi = 3.14: Area of minor segment49×3.1498=153.8698=55.86sq cm\text{Area of minor segment} \approx 49 \times 3.14 - 98 = 153.86 - 98 = 55.86 \, \text{sq cm}
  4. Area of the major segment:
    Area of major segment=Total area of the circleArea of minor segment\text{Area of major segment} = \text{Total area of the circle} - \text{Area of minor segment} Area of major segment=πr2Area of minor segment=3.14×14255.86=615.4455.86=559.58sq cm\text{Area of major segment} = \pi r^2 - \text{Area of minor segment} = 3.14 \times 14^2 - 55.86 = 615.44 - 55.86 = 559.58 \, \text{sq cm}

Thus, the area of the minor segment is approximately 55.86sq cm55.86 \, \text{sq cm}, and the area of the major segment is approximately 559.58sq cm559.58 \, \text{sq cm}.