Solveeit Logo

Question

Mathematics Question on Areas of Sector and Segment of a Circle

A chord of a circle of radius 12 cm subtends an angle of 120° at the centre. Find the area of the corresponding segment of the circle. (Use π = 3.14 and 3\sqrt3 = 1.73)

Answer

A chord of a circle of radius 12 cm subtends an angle of 120° at the centre.
Let us draw a perpendicular OV on chord ST. It will bisect the chord ST.
SV = VT

In ΔOVS,

OVOS=cos60\frac{OV}{OS} = cos 60^{\degree}

OV12=12\frac{ OV}{ 12} = \frac{1}2

OV=6cmOV = 6 \,cm

SVSO=sin60=32\frac{SV}{ SO} = sin 60^{\degree} = \frac{\sqrt3} 2

SV12=32\frac{SV}{ 12} = \frac{\sqrt3}{2}

SV=63cm SV = 6 \sqrt3\,cm

ST=2SV=2×63=123cm ST = 2SV = 2 \times 6 \sqrt3 = 12 \sqrt3 \,cm

Area of ΔOST = 12×ST×OV\frac{1}2 \times ST \times OV

= 12×123×6\frac{1}2 \times 12 \sqrt3 \times 6

= 363=36×1.73=62.28cm236\sqrt3 = 36 \times 1.73 = 62.28 \,cm^2

Area of sector OSUT = 120360×π(12)2\frac{120^{\degree} }{ 360^{\degree}} \times \pi (12)^2

= 13×3.14×144=150.72cm2\frac{1}3 \times 3.14 \times 144 = 150.72 \,cm^2

Area of segment SUT = Area of sector OSUT - Area of ΔOST
= 150.72 - 62.28
= 88.44 cm2^2