Solveeit Logo

Question

Mathematics Question on Areas of Sector and Segment of a Circle

A chord of a circle of radius 10 cm subtends a right angle at the centre. Find the area of the corresponding : (i) minor segment (ii) major sector. (Use π = 3.14)

Answer

A chord of a circle of radius 10 cm subtends a right angle at the centre.

Let AB be the chord of the circle subtending 90° angle at centre O of the circle.

(ii) Area of major sector OADB = (36090360)×πr2(\frac{360^{\degree} - 90^{\degree}}{360^{\degree}}) \times \pi r^2 = (\frac{270 ^{\degree}}{360^{\degree}})$$\pi r^2

= 34×3.14×10×10\frac{3}{4} \times 3.14 \times 10 \times 10
= 235.5cm2235.5 \, cm^2

Area of minor sector OACB = 90360×πr2\frac{90^{\degree}}{360 ^{\degree}} \times \pi r^2

= 14×3.14×10×10\frac {1}4 \times 3.14 \times 10 \times 10
= 78.5cm278.5\, cm^2

Area of ΔOAB = 12×OA×OB=12×10×10=50cm2\frac{1} 2\times OA \times OB = \frac{1} 2\times 10 \times 10 = 50 \,cm^2


(i) Area of minor segment ACB = Area of minor sector OACB - Area of ΔOAB
= 78.5 - 50 = 28.5 cm2cm^2