Solveeit Logo

Question

Question: A charged particle with charge q enters a region of constant, uniform and mutually orthogonal fields...

A charged particle with charge q enters a region of constant, uniform and mutually orthogonal fields E\overset{\rightarrow}{E} and B\overset{\rightarrow}{B} with a velocity v\overset{\rightarrow}{v} perpendicular to both E\overset{\rightarrow}{E} and B\overset{\rightarrow}{B}and comes out without any change in the magnitude or direction of v\overset{\rightarrow}{v}. Then-

A

v=E6mu×B/B2\overset{\rightarrow}{v} = \overset{\rightarrow}{E}\mspace{6mu} \times \overset{\rightarrow}{B}/B^{2}

B

v=B6mu×E/B2\overset{\rightarrow}{v} = \overset{\rightarrow}{B}\mspace{6mu} \times \overset{\rightarrow}{E}/B^{2}

C

v=E6mu×B/E2\overset{\rightarrow}{v} = \overset{\rightarrow}{E}\mspace{6mu} \times \overset{\rightarrow}{B}/E^{2}

D

v=B6mu×E/E2\overset{\rightarrow}{v} = \overset{\rightarrow}{B}\mspace{6mu} \times \overset{\rightarrow}{E}/E^{2}

Answer

v=E6mu×B/B2\overset{\rightarrow}{v} = \overset{\rightarrow}{E}\mspace{6mu} \times \overset{\rightarrow}{B}/B^{2}

Explanation

Solution

Fnet\overset{\rightarrow}{F_{net}}= Fe\overset{\rightarrow}{F_{e}} + Fm\overset{\rightarrow}{F_{m}} 0 = qE\overset{\rightarrow}{E} + q(v×B\overset{\rightarrow}{v} \times \overset{\rightarrow}{B}) Ž E\overset{\rightarrow}{E} = B6mu×v\overset{\rightarrow}{B}\mspace{6mu} \times \overset{\rightarrow}{v}

Ž E6mu×B\overset{\rightarrow}{E}\mspace{6mu} \times \overset{\rightarrow}{B} = (B6mu×v)\left( \overset{\rightarrow}{B}\mspace{6mu} \times \overset{\rightarrow}{v} \right) × B\overset{\rightarrow}{B} = v\overset{\rightarrow}{v}B\overset{\rightarrow}{B}

Q B, E & v are mutually ^ as given Žv\overset{\rightarrow}{v}= E6mu×BB2\frac{\overset{\rightarrow}{E}\mspace{6mu} \times \overset{\rightarrow}{B}}{B^{2}}