Solveeit Logo

Question

Physics Question on Moving charges and magnetism

A charged particle with charge qq enters a region of constant, uniform and mutually orthogonal fields E\vec{E} and B\vec{B} with a velocity V\vec{V} perpendicular to both E\vec{E} and B\vec{B}, and comes out without any change in its magnitude or direction Then

A

V=B×E/E2\vec{V} =\vec{B}\times\vec{E} / E^{2}

B

V=E×B/B2\vec{V} =\vec{E} \times\vec{B} / B^{2}

C

V=B×E/B2\vec{V} =\vec{B}\times\vec{E} / B^{2}

D

V=E×B/E2\vec{V} =\vec{E} \times\vec{B} /E^{2}

Answer

V=E×B/B2\vec{V} =\vec{E} \times\vec{B} / B^{2}

Explanation

Solution

When E\vec{E} and B\vec{B} are perpendicular and velocity has no change then qE=qvBqE=qvB i.e., v=EBv=\frac{E}{B}. The two forces oppose each other so, vv is along E×B\vec{E} \times\vec{B} i.e., v=E×BB2 \vec{v}=\frac{\vec{E}\times\vec{B}}{B^{2}} As E\vec{E} and B\vec{B} are perpendicular to each other E×BB2=EBsin90B2=EB\frac{\left|\vec{E}\times\vec{B}\right|}{B^{2}}=\frac{EB\,sin\,90^{\circ}}{B^{2}}=\frac{E}{B}