Solveeit Logo

Question

Question: A charged particle $(q, m)$ at rest is placed in an electric field $\vec{E}$ which varies with time ...

A charged particle (q,m)(q, m) at rest is placed in an electric field E\vec{E} which varies with time as, E=E0sinω0t2i^\vec{E} = E_0 \sin \frac{\omega_0 t}{2} \hat{i}. The maximum velocity it can attain is

A

4qE0mω0\frac{4qE_0}{m\omega_0}

B

qE02mω02\frac{qE_0^2}{m\omega_0^2}

C

2qE0mω0\frac{2qE_0}{m\omega_0}

D

2qE0mω02\frac{2qE_0}{m\omega_0^2}

Answer

4qE0mω0\frac{4qE_0}{m\omega_0}

Explanation

Solution

The force on the particle is

F=qE0sin(ω0t2),F = qE_0 \sin\left(\frac{\omega_0 t}{2}\right),

so the acceleration is

a=qE0msin(ω0t2).a = \frac{qE_0}{m} \sin\left(\frac{\omega_0 t}{2}\right).

Since the particle starts from rest, its velocity at time tt is

v(t)=0tadt=qE0m0tsin(ω0t2)dt.v(t) = \int_0^t a\,dt' = \frac{qE_0}{m} \int_0^t \sin\left(\frac{\omega_0 t'}{2}\right)dt'.

Let u=ω0t2u = \frac{\omega_0 t'}{2} so that dt=2ω0dudt' = \frac{2}{\omega_0} du. The limits change from u=0u=0 to u=ω0t2u=\frac{\omega_0 t}{2}. Thus,

v(t)=qE0m2ω00ω0t2sin(u)du.v(t) = \frac{qE_0}{m} \cdot \frac{2}{\omega_0} \int_0^{\frac{\omega_0 t}{2}} \sin(u)\,du.

Evaluating the integral,

0ω0t2sin(u)du=1cos(ω0t2),\int_0^{\frac{\omega_0 t}{2}} \sin(u)du = 1 - \cos\left(\frac{\omega_0 t}{2}\right),

so

v(t)=2qE0mω0[1cos(ω0t2)].v(t) = \frac{2qE_0}{m\omega_0} \left[1 - \cos\left(\frac{\omega_0 t}{2}\right)\right].

The maximum velocity occurs when the term [1cos(ω0t2)]\left[1 - \cos\left(\frac{\omega_0 t}{2}\right)\right] is maximum. Since cos\cos takes a minimum of 1-1,

max[1cos(ω0t2)]=1(1)=2.\max \left[1 - \cos\left(\frac{\omega_0 t}{2}\right)\right] = 1 - (-1) = 2.

Thus,

vmax=2qE0mω0×2=4qE0mω0.v_{\text{max}} = \frac{2qE_0}{m\omega_0} \times 2 = \frac{4qE_0}{m\omega_0}.