Solveeit Logo

Question

Physics Question on Magnetic Field

A charged particle moving in a uniform magnetic field and losses 4%4\% of its kinetic energy. The radius of curvature of its path changes by

A

2%

B

4%

C

10%

D

12%

Answer

2%

Explanation

Solution

As we know F=qvB=mv2rF = qvB =\frac{m v^{2}}{r}
r=mvBq\therefore r=\frac{m v}{B q}
And KE=k=12mv2KE = k =\frac{1}{2} m v^{2}
mv=2km\therefore m v=\sqrt{2 k m}
r=mvqB==2kmqB\therefore r=\frac{m v}{q B}==\sqrt{\frac{2 k m}{q B}}
rk\Rightarrow r \propto \sqrt{k}
or r=c1\2r=c^{1 \backslash 2} (cis a constant)
drdr=cdk12dr\frac{d r}{d r}=c \frac{d k^{12}}{d r}
or cΔkΔr=2k\frac{c \Delta k}{\Delta r}=2 \sqrt{k}
or Δrr=cΔk2kck=Δk2k\frac{\Delta r}{r}=\frac{c \Delta k}{2 \sqrt{k c} \sqrt{k}}=\frac{\Delta k}{2 k}
There fore percentage changes in radius of path,
Δrr\frac{\Delta r}{r} ×100=Δk2k×100=2%\times 100=\frac{\Delta k}{2 k} \times 100=2 \%