Solveeit Logo

Question

Question: A charged particle having a mass of 100g and charge of 0.1C is projected from the origin with a spee...

A charged particle having a mass of 100g and charge of 0.1C is projected from the origin with a speed of 10m/s\sqrt{10}m/s at an angle of 45° with the vertical. When it is at the highest point of its trajectory, the magnitude of magnetic field at the origin will be:

A

8.1 x 10-8 T

B

1.9 × 10-8 T

C

3.2 x 10-8 T

D

6.4 × 10-8 T

Answer

3.2 x 10-8 T

Explanation

Solution

The problem involves calculating the magnetic field at the origin due to a charged particle undergoing projectile motion, specifically when it is at the highest point of its trajectory.

1. Analyze the Projectile Motion:

  • Mass of the particle, m = 100 g = 0.1 kg

  • Charge of the particle, q = 0.1 C

  • Initial speed, u = 10\sqrt{10} m/s

  • Angle with the vertical = 45°. Therefore, the angle with the horizontal (θ) is 90° - 45° = 45°.

  • We'll use acceleration due to gravity, g = 10 m/s².

  • Initial velocity components:

    • Horizontal component, u_x = u cos(θ) = 10\sqrt{10} cos(45°) = 10×12=5\sqrt{10} \times \frac{1}{\sqrt{2}} = \sqrt{5} m/s

    • Vertical component, u_y = u sin(θ) = 10\sqrt{10} sin(45°) = 10×12=5\sqrt{10} \times \frac{1}{\sqrt{2}} = \sqrt{5} m/s

  • At the highest point of the trajectory:

    • The vertical component of velocity (v_y) becomes zero.
    • The horizontal component of velocity (v_x) remains constant: v_x = u_x = 5\sqrt{5} m/s.
    • So, the velocity vector at the highest point is v=5i^\vec{v} = \sqrt{5} \hat{i} (assuming x is horizontal and y is vertical).
  • Time to reach the highest point (t):

    • Using v_y = u_y - gt:
    • 0 = 5\sqrt{5} - 10t
    • t = 510\frac{\sqrt{5}}{10} s
  • Coordinates of the highest point (x, H):

    • Horizontal position, x = u_x t = 5×510=510=0.5\sqrt{5} \times \frac{\sqrt{5}}{10} = \frac{5}{10} = 0.5 m
    • Maximum height, H = u_y t - 12\frac{1}{2}gt² = 5×51012×10×(510)2\sqrt{5} \times \frac{\sqrt{5}}{10} - \frac{1}{2} \times 10 \times (\frac{\sqrt{5}}{10})^2 = 0.5 - 5×51005 \times \frac{5}{100} = 0.5 - 0.25 = 0.25 m
    • The position vector of the particle at the highest point from the origin is r=0.5i^+0.25j^\vec{r} = 0.5 \hat{i} + 0.25 \hat{j}.

2. Calculate the Magnetic Field using Biot-Savart Law for a Moving Charge:

The magnetic field B\vec{B} at the origin due to a point charge q moving with velocity v\vec{v} at a position r\vec{r} (from the origin to the charge) is given by:

B=μ04πq(v×r)r3\vec{B} = \frac{\mu_0}{4\pi} \frac{q (\vec{v} \times \vec{r})}{r^3}

Where μ04π=107\frac{\mu_0}{4\pi} = 10^{-7} T m/A.

  • Calculate the cross product v×r\vec{v} \times \vec{r}:

    • v×r=(5i^)×(0.5i^+0.25j^)\vec{v} \times \vec{r} = (\sqrt{5} \hat{i}) \times (0.5 \hat{i} + 0.25 \hat{j})
    • =(5×0.5)(i^×i^)+(5×0.25)(i^×j^)= (\sqrt{5} \times 0.5)(\hat{i} \times \hat{i}) + (\sqrt{5} \times 0.25)(\hat{i} \times \hat{j})
    • =0+0.255k^= 0 + 0.25\sqrt{5} \hat{k}
  • Calculate the magnitude of the position vector r:

    • r=r=(0.5)2+(0.25)2r = |\vec{r}| = \sqrt{(0.5)^2 + (0.25)^2}
    • r=0.25+0.0625=0.3125r = \sqrt{0.25 + 0.0625} = \sqrt{0.3125}
    • r=312510000=5×62516×625=516=54r = \sqrt{\frac{3125}{10000}} = \sqrt{\frac{5 \times 625}{16 \times 625}} = \sqrt{\frac{5}{16}} = \frac{\sqrt{5}}{4} m
  • Substitute values into the magnetic field formula:

    • B=μ04πqv×rr3B = \frac{\mu_0}{4\pi} \frac{q |\vec{v} \times \vec{r}|}{r^3}
    • B=107×0.1×(0.255)(54)3B = 10^{-7} \times \frac{0.1 \times (0.25\sqrt{5})}{(\frac{\sqrt{5}}{4})^3}
    • B=107×0.1×0.2555564B = 10^{-7} \times \frac{0.1 \times 0.25\sqrt{5}}{\frac{5\sqrt{5}}{64}}
    • B=107×0.1×0.25×645B = 10^{-7} \times \frac{0.1 \times 0.25 \times 64}{5}
    • B=107×0.025×645B = 10^{-7} \times \frac{0.025 \times 64}{5}
    • B=107×0.005×64B = 10^{-7} \times 0.005 \times 64
    • B=107×0.32B = 10^{-7} \times 0.32
    • B=3.2×108B = 3.2 \times 10^{-8} T

The magnitude of the magnetic field at the origin is 3.2×1083.2 \times 10^{-8} T.