Solveeit Logo

Question

Question: A charged particle gains a speed of $10^6$ m/s, when accelerated from rest through a potential diffe...

A charged particle gains a speed of 10610^6 m/s, when accelerated from rest through a potential difference 1010 kV. It enters a region of magnetic field of 0.40.4 T such that it enters the magnetic field perpendicularly. The radius of circular path described by it is :

A

5 cm

B

5 mm

C

0.5 m

D

50 cm

Answer

5 cm

Explanation

Solution

The kinetic energy gained by the charged particle is equal to the work done by the electric field: qΔV=12mv2q\Delta V = \frac{1}{2}mv^2 This gives the charge-to-mass ratio: qm=v22ΔV\frac{q}{m} = \frac{v^2}{2\Delta V}

When the particle enters the magnetic field perpendicularly, the magnetic force provides the centripetal force for circular motion: qvB=mv2rqvB = \frac{mv^2}{r} Rearranging for the radius rr: r=mvqBr = \frac{mv}{qB}

Substitute the expression for qm\frac{q}{m} into the radius equation: r=vB(mq)=vB(2ΔVv2)=2ΔVvBr = \frac{v}{B} \left(\frac{m}{q}\right) = \frac{v}{B} \left(\frac{2\Delta V}{v^2}\right) = \frac{2\Delta V}{vB}

Given values: Potential difference, ΔV=10 kV=10×103 V\Delta V = 10 \text{ kV} = 10 \times 10^3 \text{ V} Speed, v=106 m/sv = 10^6 \text{ m/s} Magnetic field, B=0.4 TB = 0.4 \text{ T}

Plugging in the values: r=2×(10×103 V)(106 m/s)×(0.4 T)=2×1040.4×106=20.4×1046=5×102 mr = \frac{2 \times (10 \times 10^3 \text{ V})}{(10^6 \text{ m/s}) \times (0.4 \text{ T})} = \frac{2 \times 10^4}{0.4 \times 10^6} = \frac{2}{0.4} \times 10^{4-6} = 5 \times 10^{-2} \text{ m} r=0.05 m=5 cmr = 0.05 \text{ m} = 5 \text{ cm}