Solveeit Logo

Question

Question: A charged cork of mass m suspended by a light string is placed in uniform electric filed of strength...

A charged cork of mass m suspended by a light string is placed in uniform electric filed of strength

E=(i^+j^)×105NC1E=(\hat{i}+\hat{j})\times10^5 NC^{-1} as shown in the fig. If in equilibrium position tension in the string is 2mg(1+3)\frac{2mg}{(1+\sqrt{3})} then angle 'α\alpha' with the vertical is -

A

60°

B

30°

C

45°

D

18°

Answer

60°

Explanation

Solution

The forces acting on the charged cork are the gravitational force Fg=mgj^\vec{F}_g = -mg\hat{j}, the electric force Fe=qE\vec{F}_e = q\vec{E}, and the tension in the string T\vec{T}. In equilibrium, the vector sum of these forces is zero: T+Fg+Fe=0\vec{T} + \vec{F}_g + \vec{F}_e = \vec{0}.

Let's set up a coordinate system with the vertical direction as the y-axis (upwards positive) and the horizontal direction as the x-axis (to the right positive). The electric field is given as E=(i^+j^)×105NC1\vec{E} = (\hat{i} + \hat{j}) \times 10^5 \, \text{NC}^{-1}. Let E0=105NC1E_0 = 10^5 \, \text{NC}^{-1}. So E=E0i^+E0j^\vec{E} = E_0\hat{i} + E_0\hat{j}. The gravitational force is Fg=mgj^\vec{F}_g = -mg\hat{j}. The electric force is Fe=qE=qE0i^+qE0j^\vec{F}_e = q\vec{E} = qE_0\hat{i} + qE_0\hat{j}.

The string makes an angle α\alpha with the vertical. Since the electric force has components in the positive x and positive y directions, the cork will be displaced to the right and upwards from the equilibrium position without the electric field. The figure shows the angle α\alpha with the vertical, and the string is displaced to the right. Assuming α\alpha is the angle with the upward vertical (positive y-axis), the tension vector can be written as T=Tsinαi^+Tcosαj^\vec{T} = T\sin\alpha\hat{i} + T\cos\alpha\hat{j}.

The equilibrium condition is: (Tsinαi^+Tcosαj^)+(mgj^)+(qE0i^+qE0j^)=0(T\sin\alpha\hat{i} + T\cos\alpha\hat{j}) + (-mg\hat{j}) + (qE_0\hat{i} + qE_0\hat{j}) = \vec{0}

Separating into components: x-component: Tsinα+qE0=0    Tsinα=qE0T\sin\alpha + qE_0 = 0 \implies T\sin\alpha = -qE_0 y-component: Tcosαmg+qE0=0    Tcosα=mgqE0T\cos\alpha - mg + qE_0 = 0 \implies T\cos\alpha = mg - qE_0

From the figure, the string is in the first quadrant, so sinα>0\sin\alpha > 0 and cosα>0\cos\alpha > 0 for 0<α<900 < \alpha < 90^\circ. Since T>0T > 0 and E0>0E_0 > 0, the equation Tsinα=qE0T\sin\alpha = -qE_0 implies that q>0-q > 0, so q<0q < 0. The charge of the cork is negative.

We are given the tension T=2mg(1+3)T = \frac{2mg}{(1+\sqrt{3})}. We can square and add the component equations: (Tsinα)2+(Tcosα)2=(qE0)2+(mgqE0)2(T\sin\alpha)^2 + (T\cos\alpha)^2 = (-qE_0)^2 + (mg - qE_0)^2 T2(sin2α+cos2α)=q2E02+m2g22mgqE0+q2E02T^2(\sin^2\alpha + \cos^2\alpha) = q^2E_0^2 + m^2g^2 - 2mgqE_0 + q^2E_0^2 T2=2q2E022mgqE0+m2g2T^2 = 2q^2E_0^2 - 2mgqE_0 + m^2g^2

Substitute the value of TT: (2mg1+3)2=2q2E022mgqE0+m2g2\left(\frac{2mg}{1+\sqrt{3}}\right)^2 = 2q^2E_0^2 - 2mgqE_0 + m^2g^2 4m2g2(1+3)2=2q2E022mgqE0+m2g2\frac{4m^2g^2}{(1+\sqrt{3})^2} = 2q^2E_0^2 - 2mgqE_0 + m^2g^2 4m2g21+3+23=4m2g24+23=2m2g22+3\frac{4m^2g^2}{1 + 3 + 2\sqrt{3}} = \frac{4m^2g^2}{4 + 2\sqrt{3}} = \frac{2m^2g^2}{2 + \sqrt{3}} 2m2g22+3=2q2E022mgqE0+m2g2\frac{2m^2g^2}{2 + \sqrt{3}} = 2q^2E_0^2 - 2mgqE_0 + m^2g^2

Let's express qE0qE_0 in terms of TT and angles. From the component equations: qE0=Tsinα    qE0=Tsinα-qE_0 = T\sin\alpha \implies qE_0 = -T\sin\alpha mgqE0=Tcosα    mg(Tsinα)=Tcosα    mg+Tsinα=Tcosαmg - qE_0 = T\cos\alpha \implies mg - (-T\sin\alpha) = T\cos\alpha \implies mg + T\sin\alpha = T\cos\alpha mg=TcosαTsinα=T(cosαsinα)mg = T\cos\alpha - T\sin\alpha = T(\cos\alpha - \sin\alpha) Substitute the value of TT: mg=2mg1+3(cosαsinα)mg = \frac{2mg}{1+\sqrt{3}}(\cos\alpha - \sin\alpha) 1=21+3(cosαsinα)1 = \frac{2}{1+\sqrt{3}}(\cos\alpha - \sin\alpha) 1+32=cosαsinα\frac{1+\sqrt{3}}{2} = \cos\alpha - \sin\alpha

Let's check the direction of displacement in the figure again. The electric field is in the first quadrant. Gravity is downwards. A positive charge would be pushed in the first quadrant by the electric field. A negative charge would be pushed in the third quadrant. The figure shows the cork displaced to the right and upwards. This suggests that the net force (excluding tension) is in the first quadrant, which would be the case for a positive charge. If q>0q > 0, then Tsinα=qE0T\sin\alpha = -qE_0 implies sinα<0\sin\alpha < 0, which is not possible for 0<α<900 < \alpha < 90^\circ. Let's re-examine the figure. The figure shows the angle α\alpha with the vertical line. The string is directed upwards and to the left from the cork. This means the horizontal component of tension is to the left (negative x-direction) and the vertical component is upwards (positive y-direction). If the string makes an angle α\alpha with the upward vertical (positive y-axis) and is in the second quadrant, then Tx=TsinαT_x = -T\sin\alpha and Ty=TcosαT_y = T\cos\alpha. Equilibrium equations: x-component: Tsinα+qE0=0    Tsinα=qE0-T\sin\alpha + qE_0 = 0 \implies T\sin\alpha = qE_0 y-component: Tcosαmg+qE0=0    Tcosα=mgqE0T\cos\alpha - mg + qE_0 = 0 \implies T\cos\alpha = mg - qE_0

From Tsinα=qE0T\sin\alpha = qE_0, since T>0T > 0, sinα>0\sin\alpha > 0 (for 0<α<900 < \alpha < 90^\circ), and E0>0E_0 > 0, we must have q>0q > 0. From Tcosα=mgqE0T\cos\alpha = mg - qE_0, since T>0T > 0 and cosα>0\cos\alpha > 0, we need mgqE0>0    mg>qE0mg - qE_0 > 0 \implies mg > qE_0. So, mg>Tsinαmg > T\sin\alpha.

Divide the component equations: TsinαTcosα=qE0mgqE0\frac{T\sin\alpha}{T\cos\alpha} = \frac{qE_0}{mg - qE_0} tanα=qE0mgqE0\tan\alpha = \frac{qE_0}{mg - qE_0}

From the equations Tsinα=qE0T\sin\alpha = qE_0 and Tcosα=mgqE0T\cos\alpha = mg - qE_0, we have qE0=TsinαqE_0 = T\sin\alpha. Tcosα=mgTsinαT\cos\alpha = mg - T\sin\alpha mg=Tcosα+Tsinα=T(cosα+sinα)mg = T\cos\alpha + T\sin\alpha = T(\cos\alpha + \sin\alpha) Substitute the value of TT: mg=2mg1+3(cosα+sinα)mg = \frac{2mg}{1+\sqrt{3}}(\cos\alpha + \sin\alpha) 1=21+3(cosα+sinα)1 = \frac{2}{1+\sqrt{3}}(\cos\alpha + \sin\alpha) 1+32=cosα+sinα\frac{1+\sqrt{3}}{2} = \cos\alpha + \sin\alpha

α=60\alpha = 60^\circ: cos60+sin60=12+32=1+32\cos 60^\circ + \sin 60^\circ = \frac{1}{2} + \frac{\sqrt{3}}{2} = \frac{1+\sqrt{3}}{2}.

The angle α\alpha with the vertical is 6060^\circ.