Solveeit Logo

Question

Question: A charged capacitor of capacitance C = 1 µF and charge Q₀ = 8 µC is connected with time varying resi...

A charged capacitor of capacitance C = 1 µF and charge Q₀ = 8 µC is connected with time varying resistance R = (5 + 3 × 10⁶ t) Ω at t = 0. The current in the circuit (in A) at t = 353\frac{35}{3} µs is x then 10x is

Answer

1

Explanation

Solution

The problem describes a discharging RC circuit where the resistance is time-varying.

  1. Set up the differential equation for a discharging RC circuit:
    For a discharging capacitor, the voltage across the capacitor VC=Q/CV_C = Q/C drives the current through the resistor. The voltage drop across the resistor is IRIR.
    According to Kirchhoff's voltage law:
    VCIR=0V_C - IR = 0
    QC=IR\frac{Q}{C} = IR

    The current II is the rate at which charge leaves the capacitor, so I=dQdtI = -\frac{dQ}{dt}.
    Substituting II into the equation:
    QC=dQdtR\frac{Q}{C} = -\frac{dQ}{dt} R
    Rearranging the terms to separate variables:
    dQQ=dtRC\frac{dQ}{Q} = -\frac{dt}{RC}

  2. Substitute the given time-varying resistance R(t)R(t):
    Given R(t)=(5+3×106t)ΩR(t) = (5 + 3 \times 10^6 t) \Omega and C=1μF=1×106C = 1 \mu F = 1 \times 10^{-6} F.
    dQQ=dt(5+3×106t)(1×106)\frac{dQ}{Q} = -\frac{dt}{(5 + 3 \times 10^6 t) (1 \times 10^{-6})}

  3. Integrate both sides:
    Integrate from initial charge Q0Q_0 at t=0t=0 to charge QQ at time tt:
    Q0QdQQ=11×1060tdt5+3×106t\int_{Q_0}^{Q} \frac{dQ}{Q} = -\frac{1}{1 \times 10^{-6}} \int_{0}^{t} \frac{dt}{5 + 3 \times 10^6 t}
    ln(QQ0)=1060tdt5+3×106t\ln\left(\frac{Q}{Q_0}\right) = -10^6 \int_{0}^{t} \frac{dt}{5 + 3 \times 10^6 t}

    To solve the integral on the right side, let u=5+3×106tu = 5 + 3 \times 10^6 t. Then du=3×106dtdu = 3 \times 10^6 dt, so dt=du3×106dt = \frac{du}{3 \times 10^6}.
    When t=0t=0, u=5u=5. When t=tt=t, u=5+3×106tu=5+3 \times 10^6 t.
    0tdt5+3×106t=55+3×106t1udu3×106\int_{0}^{t} \frac{dt}{5 + 3 \times 10^6 t} = \int_{5}^{5 + 3 \times 10^6 t} \frac{1}{u} \frac{du}{3 \times 10^6}
    =13×106[ln(u)]55+3×106t= \frac{1}{3 \times 10^6} [\ln(u)]_{5}^{5 + 3 \times 10^6 t}
    =13×106[ln(5+3×106t)ln(5)]= \frac{1}{3 \times 10^6} \left[\ln(5 + 3 \times 10^6 t) - \ln(5)\right]
    =13×106ln(5+3×106t5)= \frac{1}{3 \times 10^6} \ln\left(\frac{5 + 3 \times 10^6 t}{5}\right)
    =13×106ln(1+3×1065t)= \frac{1}{3 \times 10^6} \ln\left(1 + \frac{3 \times 10^6}{5} t\right)

    Substitute this back into the charge equation:
    ln(QQ0)=106×13×106ln(1+3×1065t)\ln\left(\frac{Q}{Q_0}\right) = -10^6 \times \frac{1}{3 \times 10^6} \ln\left(1 + \frac{3 \times 10^6}{5} t\right)
    ln(QQ0)=13ln(1+3×1065t)\ln\left(\frac{Q}{Q_0}\right) = -\frac{1}{3} \ln\left(1 + \frac{3 \times 10^6}{5} t\right)
    Using logarithm properties, alnx=lnxaa \ln x = \ln x^a:
    ln(QQ0)=ln((1+3×1065t)1/3)\ln\left(\frac{Q}{Q_0}\right) = \ln\left(\left(1 + \frac{3 \times 10^6}{5} t\right)^{-1/3}\right)
    Therefore, the charge on the capacitor at time tt is:
    Q(t)=Q0(1+3×1065t)1/3Q(t) = Q_0 \left(1 + \frac{3 \times 10^6}{5} t\right)^{-1/3}

  4. Calculate the current I(t)I(t):
    The current is I(t)=dQdtI(t) = -\frac{dQ}{dt}.
    Differentiate Q(t)Q(t) with respect to tt:
    dQdt=Q0(13)(1+3×1065t)1/31×(3×1065)\frac{dQ}{dt} = Q_0 \left(-\frac{1}{3}\right) \left(1 + \frac{3 \times 10^6}{5} t\right)^{-1/3 - 1} \times \left(\frac{3 \times 10^6}{5}\right)
    dQdt=Q0(13)(1+3×1065t)4/3×(3×1065)\frac{dQ}{dt} = Q_0 \left(-\frac{1}{3}\right) \left(1 + \frac{3 \times 10^6}{5} t\right)^{-4/3} \times \left(\frac{3 \times 10^6}{5}\right)
    dQdt=Q01065(1+3×1065t)4/3\frac{dQ}{dt} = -Q_0 \frac{10^6}{5} \left(1 + \frac{3 \times 10^6}{5} t\right)^{-4/3}

    Now, I(t)=dQdtI(t) = -\frac{dQ}{dt}:
    I(t)=Q01065(1+3×1065t)4/3I(t) = Q_0 \frac{10^6}{5} \left(1 + \frac{3 \times 10^6}{5} t\right)^{-4/3}

  5. Substitute the given values to find II at t=353μst = \frac{35}{3} \mu s:
    Q0=8μC=8×106Q_0 = 8 \mu C = 8 \times 10^{-6} C
    t=353μs=353×106t = \frac{35}{3} \mu s = \frac{35}{3} \times 10^{-6} s

    First, calculate the term inside the parenthesis:
    1+3×1065t=1+3×1065×353×1061 + \frac{3 \times 10^6}{5} t = 1 + \frac{3 \times 10^6}{5} \times \frac{35}{3} \times 10^{-6}
    =1+3×35×106×1065×3= 1 + \frac{3 \times 35 \times 10^6 \times 10^{-6}}{5 \times 3}
    =1+10515= 1 + \frac{105}{15}
    =1+7=8= 1 + 7 = 8

    Now substitute this value into the current equation:
    I=(8×106)×1065×(8)4/3I = (8 \times 10^{-6}) \times \frac{10^6}{5} \times (8)^{-4/3}
    I=85×(23)4/3I = \frac{8}{5} \times (2^3)^{-4/3}
    I=85×23×(4/3)I = \frac{8}{5} \times 2^{3 \times (-4/3)}
    I=85×24I = \frac{8}{5} \times 2^{-4}
    I=85×124I = \frac{8}{5} \times \frac{1}{2^4}
    I=85×116I = \frac{8}{5} \times \frac{1}{16}
    I=15×2=110I = \frac{1}{5 \times 2} = \frac{1}{10} A

    So, the current x=0.1x = 0.1 A.

  6. Calculate 10x:
    10x=10×0.1=110x = 10 \times 0.1 = 1.