Solveeit Logo

Question

Physics Question on electrostatic potential and capacitance

A charge Q is uniformly distributed over a long rod AB of length L as shown in the figure. The electric potential at the point O lying at distance L from the end A is

A

Q8pε0L\frac{Q}{8 p \varepsilon_0 L}

B

3Q4pε0L\frac{3Q}{4 p \varepsilon_0 L}

C

Q4pε0LIn2\frac{Q}{4 p \varepsilon_0 L\, In\, 2}

D

QIn24pε0L\frac{Q\, In\, 2}{4 p \varepsilon_0 L}

Answer

QIn24pε0L\frac{Q\, In\, 2}{4 p \varepsilon_0 L}

Explanation

Solution

V=L2LkdQx=L2Lk(QL)dxx=Q4pε0LL2L(1x)dxV=\int ^{2L}_L \frac{kdQ}{x}=\int ^{2L}_L \frac{k\bigg(\frac{Q}{L}\bigg)dx}{x}=\frac{Q}{4 p\varepsilon_0 L} \int ^{2L}_L \bigg(\frac{1}{x}\bigg)dx
\hspace15mm =\frac{Q}{4 p\varepsilon_0 L} [\log_e\, x]^{2L}_L
\hspace15mm =\frac{Q}{4 p\varepsilon_0 L} [\log_e\, 2L- \log_e L]=\frac{Q}{4 p\varepsilon_0 L} In\, (2)