Solveeit Logo

Question

Question: A charge +q is fixed at each of the points x = x<sub>0</sub>, x = 3x<sub>0</sub>, x = 5x<sub>0</sub...

A charge +q is fixed at each of the points x = x0,

x = 3x0, x = 5x0 ,… upto on X-axis and charge –q is fixed on each of the points x = 2x0, x = 4x0, x = 6x0, …upto. Here x0 is a positive constant. Take the potential at a point due to a charge Q at a distance r from it to be Q4πε0r\frac{Q}{4\pi\varepsilon_{0}r}. Then the potential at the origin due to above system of charges will be-

A

zero

B

q8πε0x0loge2\frac{q}{8\pi\varepsilon_{0}x_{0}\log_{e}2}

C

D

qloge24πε0x0\frac{q\log_{e}2}{4\pi\varepsilon_{0}x_{0}}

Answer

qloge24πε0x0\frac{q\log_{e}2}{4\pi\varepsilon_{0}x_{0}}

Explanation

Solution

V = kqx0\frac { \mathrm { kq } } { \mathrm { x } _ { 0 } }kq2x0+kq3x0kq4x0\frac { \mathrm { kq } } { 2 \mathrm { x } _ { 0 } } + \frac { \mathrm { kq } } { 3 \mathrm { x } _ { 0 } } - \frac { \mathrm { kq } } { 4 \mathrm { x } _ { 0 } }+ …….. 

V = kqx0(112+1314)\frac { \mathrm { kq } } { \mathrm { x } _ { 0 } } \left( 1 - \frac { 1 } { 2 } + \frac { 1 } { 3 } - \frac { 1 } { 4 } \ldots \infty \right) = kqx0(loge2)\frac { \mathrm { kq } } { \mathrm { x } _ { 0 } } \left( \log _ { \mathrm { e } } 2 \right)