Solveeit Logo

Question

Physics Question on coulombs law

A charge QQ is divided into two charges qq and QqQ-q . The value of qq such that the force between them is maximum, is

A

Q

B

3Q4\frac{3Q}{4}

C

Q2\frac{Q}{2}

D

Q3\frac{Q}{3}

Answer

Q2\frac{Q}{2}

Explanation

Solution

By Coulomb's law, When charge QQ is divided into two charges qq and QqQ-q F=14πε0q(Qq)r2F=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q \cdot(Q-q)}{r^{2}} The value of qq Fmax=14πε0Q2(QQ2)r2F_{\max }=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\frac{Q}{2}\left(Q-\frac{Q}{2}\right)}{r^{2}} (Putting q=Q2q=\frac{Q}{2} for the maximum force) =14πε0Q2(Q2)r2=\frac{1}{4\, \pi\, \varepsilon_{0}} \cdot \frac{\frac{Q}{2}\left(\frac{Q}{2}\right)}{r^{2}} =14πε0Q24r2=\frac{1}{4 \,\pi\, \varepsilon_{0}} \cdot \frac{\frac{Q^{2}}{4}}{r^{2}} =14πε0Q24r2=\frac{1}{4 \,\pi \,\varepsilon_{0}} \cdot \frac{Q^{2}}{4 r^{2}} =14πε0(Q2)2r2=\frac{1}{4 \,\pi \,\varepsilon_{0}} \cdot \frac{\left(\frac{Q}{2}\right)^{2}}{r^{2}}