Solveeit Logo

Question

Question: A charge Q is distributed over two concentric hollow spheres of radii r and \((R > r)\) such that th...

A charge Q is distributed over two concentric hollow spheres of radii r and (R>r)(R > r) such that the surface densities are equal. The potential at the common centre is

A

Q(R2+r2)4πε0(R+r)\frac{Q(R^{2} + r^{2})}{4\pi\varepsilon_{0}(R + r)}

B

QR+r\frac{Q}{R + r}

C

Zero

D

Q(R+r)4πε0(R2+r2)\frac{Q(R + r)}{4\pi\varepsilon_{0}(R^{2} + r^{2})}

Answer

Q(R+r)4πε0(R2+r2)\frac{Q(R + r)}{4\pi\varepsilon_{0}(R^{2} + r^{2})}

Explanation

Solution

If q1q_{1} and q2q_{2} are the charges on spheres of radius r and R respectively, in accordance with conservation of charge

Q=q1+q2Q = q_{1} + q_{2} ….(i)

and according to the given problem σ1=σ2\sigma_{1} = \sigma_{2}

i.e., q14πr2=q24πR2\frac{q_{1}}{4\pi r^{2}} = \frac{q_{2}}{4\pi R^{2}} Þ q1q2=r2R2\frac{q_{1}}{q_{2}} = \frac{r^{2}}{R^{2}} …. (ii)

So equation (i) and (ii) gives q1=Qr2(R2+r2)q_{1} = \frac{Qr^{2}}{(R^{2} + r^{2})}and

q2=QR2(R2+r2)q_{2} = \frac{QR^{2}}{(R^{2} + r^{2})}

Potential at common centre

V=14πε0[q1r+q2R]=14πε0[Qr(R2+r2)+QR(R2+r2)]=14πε0.Q(R+r)(R2+r2)V = \frac{1}{4\pi\varepsilon_{0}}\left\lbrack \frac{q_{1}}{r} + \frac{q_{2}}{R} \right\rbrack = \frac{1}{4\pi\varepsilon_{0}}\left\lbrack \frac{Qr}{(R^{2} + r^{2})} + \frac{QR}{(R^{2} + r^{2})} \right\rbrack = \frac{1}{4\pi\varepsilon_{0}}.\frac{Q(R + r)}{(R^{2} + r^{2})}