Solveeit Logo

Question

Physics Question on electrostatic potential and capacitance

A charge QQ is distributed over two concentric conducting thin spherical shells radii rr and RR (R>r)( R > r ). If the surface charge densities on the two shells are equal, the electric potential at the common centre is :

A

14πε0(R+2r)Q2(R2+r2)\frac{1}{4 \pi \varepsilon_{0}} \frac{( R +2 r ) Q }{2\left( R ^{2}+ r ^{2}\right)}

B

14πε0(R+r)2(R2+r2)Q\frac{1}{4 \pi \varepsilon_{0}} \frac{( R + r )}{2\left( R ^{2}+ r ^{2}\right)} Q

C

14πε0(R+r)(R2+r2)Q\frac{1}{4 \pi \varepsilon_{0}} \frac{( R + r )}{\left( R ^{2}+ r ^{2}\right)} Q

D

14πε0(2R+r)(R2+r2)Q\frac{1}{4 \pi \varepsilon_{0}} \frac{(2 R+r)}{\left(R^{2}+r^{2}\right)} Q

Answer

14πε0(R+r)(R2+r2)Q\frac{1}{4 \pi \varepsilon_{0}} \frac{( R + r )}{\left( R ^{2}+ r ^{2}\right)} Q

Explanation

Solution

Let the charges on inner and outer spheres are Q1Q_{1} and Q2Q_{2}