Solveeit Logo

Question

Question: A charge particle q<sub>1</sub> is at position (2, – 1, 3) .The electrostatic force on another charg...

A charge particle q1 is at position (2, – 1, 3) .The electrostatic force on another charge particle q2 at (0, 0, 0) is –

A

q1q256πε0(2i^j^+3k^)\frac{q_{1}q_{2}}{56\pi\varepsilon_{0}}(2\widehat{i}–\widehat{j} + 3\widehat{k})

B

q1q25614ε0(2i^j^3k^)\frac{q_{1}q_{2}}{56\sqrt{14}\varepsilon_{0}}(2\widehat{i}–\widehat{j}–3\widehat{k})

C

q1q256πε0(i^2j^3k^)\frac{q_{1}q_{2}}{56\pi\varepsilon_{0}}(\widehat{i}–2\widehat{j}–3\widehat{k})

D

q1q25614πε0(i^2j^3k^)\frac{q_{1}q_{2}}{56\sqrt{14}\pi\varepsilon_{0}}(\widehat{i}–2\widehat{j}–3\widehat{k})

Answer

q1q25614πε0(i^2j^3k^)\frac{q_{1}q_{2}}{56\sqrt{14}\pi\varepsilon_{0}}(\widehat{i}–2\widehat{j}–3\widehat{k})

Explanation

Solution

A (q1) ® (2, – 1, 3)

B(q2) ® (0, 0 ,0)

=

rA\overrightarrow { r _ { \mathrm { A } } } = 2i^j^+3k^2 \hat { i } - \hat { j } + 3 \hat { k } ; rB\overrightarrow { r _ { B } } = 0