Solveeit Logo

Question

Physics Question on electrostatic potential and capacitance

A charge of total amount QQ is distributed over two concentric hollow spheres of radii rr and R(R>r)R (R > r) such that the surface charge densities on the two spheres are equal. The electric potential at the common centre is

A

14πε0(Rr)Q(R2+r2)\frac{1}{4\pi\varepsilon_{0}} \frac{\left(R-r\right)Q}{\left(R^{2}+r^{2}\right)}

B

14πε0(R+r)Q2(R2+r2)\frac{1}{4\pi\varepsilon_{0}} \frac{\left(R+r\right)Q}{2}\left(R^{2}+r^{2}\right)

C

14πε0(R+r)Q(R2+r2)\frac{1}{4\pi\varepsilon_{0}} \frac{\left(R+r\right)Q}{\left(R^{2}+r^{2}\right)}

D

14πε0(Rr)Q2(R2+r2)\frac{1}{4\pi\varepsilon_{0}} \frac{\left(R-r\right)Q}{2}\left(R^{2}+r^{2}\right)

Answer

14πε0(R+r)Q(R2+r2)\frac{1}{4\pi\varepsilon_{0}} \frac{\left(R+r\right)Q}{\left(R^{2}+r^{2}\right)}

Explanation

Solution

Let q1q_1 and q2q_2 be charge on two spheres of radius r'r' and R'R' respectively As, q1+q2=Qq_1+q_2=Q and σ1+σ2\sigma_{1}+\sigma_{2} [Surface charge density are equal] q1rπr2=q24πR2\therefore \frac{q_{1}}{r\pi r^{2}}=\frac{q_{2}}{4\pi R^{2}} So, q1=Qr2R2+r2q_{1}=\frac{Qr^{2}}{R^{2}+r^{2}} and q2=QR2R2+r2q_{2}=\frac{QR^{2}}{R^{2}+r^{2}} Now, potential, V=14πε0[q1r+q2R]V = \frac{1}{4\pi\varepsilon_{0}}\left[\frac{q_{1}}{r}+\frac{q_{2}}{R}\right] =14πε0[QrR2+r2+QrR2+r2]=\frac{1}{4\pi \varepsilon _{0}} \left[\frac{Qr}{R^{2}+r^{2}}+\frac{Qr}{R^{2}+r^{2}}\right] =Q(R+r)R2+r214πε0=\frac{Q\left(R+r\right)}{R^{2}+r^{2}} \frac{1}{4\pi\varepsilon_{0}}