Solveeit Logo

Question

Question: A chain of length l is placed on a smooth spherical surface of radius r with one of its ends fixed a...

A chain of length l is placed on a smooth spherical surface of radius r with one of its ends fixed at the top of the surface. Length of chain is assumed to be l<πr/2. Acceleration of each element of chain when upper end is released is

A

lgr(1cosr1)\frac { \lg } { \mathrm { r } } \left( 1 - \cos \frac { \mathrm { r } } { 1 } \right)

B

rg1(1cos1r)\frac { \mathrm { rg } } { 1 } \left( 1 - \cos \frac { 1 } { \mathrm { r } } \right)

C

lgr(1sin1r)\frac { \lg } { \mathrm { r } } \left( 1 - \sin \frac { 1 } { \mathrm { r } } \right)

D

rg1(1sin1r)\frac { \mathrm { rg } } { 1 } \left( 1 - \sin \frac { 1 } { \mathrm { r } } \right)

Answer

rg1(1cos1r)\frac { \mathrm { rg } } { 1 } \left( 1 - \cos \frac { 1 } { \mathrm { r } } \right)

Explanation

Solution

Let mass per unit length of chain = ml\frac { \mathrm { m } } { \mathrm { l } }

Consider an element of chain of length dl subtending an angle of dθ at the centre of spherical surface.

Mass of element dm = mldl=mlrdθ\frac { \mathrm { m } } { \mathrm { l } } \mathrm { dl } = \frac { \mathrm { m } } { \mathrm { l } } \mathrm { rd } \theta

Force acting on element, dF = dmg sin θ

= ml\frac { \mathrm { m } } { \mathrm { l } } rg sin θ dθ

∴ F = m1rg0asinθdθ\frac { \mathrm { m } } { 1 } \operatorname { rg } \int _ { 0 } ^ { \mathrm { a } } \sin \theta \mathrm { d } \theta

= m1rg(1cosα)\frac { \mathrm { m } } { 1 } \operatorname { rg } ( 1 - \cos \alpha )

= m1rg(1cos1r)\frac { m } { 1 } \operatorname { rg } \left( 1 - \cos \frac { 1 } { r } \right)

Then a = Fm=rg1(1cos1r)\frac { \mathrm { F } } { \mathrm { m } } = \frac { \mathrm { rg } } { 1 } \left( 1 - \cos \frac { 1 } { \mathrm { r } } \right)