Solveeit Logo

Question

Question: A chain of length l is lying in a smooth horizontal tube such that a fraction of its length h hangs ...

A chain of length l is lying in a smooth horizontal tube such that a fraction of its length h hangs freely and the end touches the ground. At a certain moment the other end of chain is set free. The speed of this end of chain when it slips out of the tube is

A

[(2gh)dldh]1/2\left[ ( 2 g h ) \frac { \mathrm { dl } } { \mathrm { dh } } \right] ^ { 1 / 2 }

B

gh\sqrt { \mathrm { gh } }

C

2gl\sqrt { 2 \mathrm { gl } }

D

(2ghloge1 h)1/2\left( 2 \operatorname { gh } \log _ { \mathrm { e } } \frac { 1 } { \mathrm {~h} } \right) ^ { 1 / 2 }

Answer

(2ghloge1 h)1/2\left( 2 \operatorname { gh } \log _ { \mathrm { e } } \frac { 1 } { \mathrm {~h} } \right) ^ { 1 / 2 }

Explanation

Solution

For hanging part,

mgh – T = mha …….. (i)

and for par in tube,

T = mxa ………….. (ii)

Adding the above equations, we get

mgh = m(h + x)a

or a = ghh+x\frac { g h } { h + x } or dvdt=ghh+x\frac { d v } { d t } = \frac { g h } { h + x }

or dvdxdxdt=ghh+x\frac { d v } { d x } \frac { d x } { d t } = \frac { g h } { h + x } or vdvdt=ghh+x\frac { v d v } { d t } = \frac { g h } { h + x } or vdv =

ghh+x\frac { g h } { h + x } dx

0vvdv=01hghh+xdx\int _ { 0 } ^ { v } v d v = \int _ { 0 } ^ { 1 - h } \frac { g h } { h + x } d x

i.e., v = [2ghloge1 h]1/2\left[ 2 \operatorname { gh } \log _ { \mathrm { e } } \frac { 1 } { \mathrm {~h} } \right] ^ { 1 / 2 }