Solveeit Logo

Question

Question: A chain of length l \< \(\frac { \pi \mathrm { R } } { 2 }\) is placed on a smooth surface whose som...

A chain of length l < πR2\frac { \pi \mathrm { R } } { 2 } is placed on a smooth surface whose some part is horizontal and some part is quarter circular of radius r in the vertical plane as shown. Initially the whole part of chain lies in the circular part with one end at topmost point of circular surface. If the mass of chain is m, then work required to pull very slowly the whole chain on horizontal part is –

A

gR2

B

gR2

C

mgR2\frac { \mathrm { m } } { \ell } \mathrm { gR } ^ { 2 } [(R)sin(R)]\left[ \left( \frac { \ell } { \mathrm { R } } \right) - \sin \left( \frac { \ell } { \mathrm { R } } \right) \right]

D

Answer

mgR2\frac { \mathrm { m } } { \ell } \mathrm { gR } ^ { 2 } [(R)sin(R)]\left[ \left( \frac { \ell } { \mathrm { R } } \right) - \sin \left( \frac { \ell } { \mathrm { R } } \right) \right]

Explanation

Solution

= –× g × R[1 – cos q]

dUi\mathrm { dU } _ { \mathrm { i } } = mgR2- \frac { \mathrm { mgR } ^ { 2 } } { \ell }[1 – cosq]dq

\ Ui = mgR2- \frac { \mathrm { mgR } ^ { 2 } } { \ell }

and Uf = 0 \ Wext = DU