Solveeit Logo

Question

Question: A certain reaction proceeds in sequence of three elementary steps with rate constant k<sub>1</sub>, ...

A certain reaction proceeds in sequence of three elementary steps with rate constant k1, k2& k3. If kobs= (k1k2)1/2\left( \frac{k_{1}}{k_{2}} \right)^{1/2}. k3 the observed Ea is –

A

12(E1E2)+E3\frac{1}{2}\left( \frac{E_{1}}{E_{2}} \right) + E_{3}

B

E3+E12\frac{E_{3} + E_{1}}{2}

C

E3(E1E2)1/2E_{3}\left( \frac{E_{1}}{E_{2}} \right)^{1/2}

D

E3 + 12\frac{1}{2} [E1 –E2]

Answer

E3 + 12\frac{1}{2} E<sub>1</sub>E<sub>2</sub>E<sub>1</sub> –E<sub>2</sub>

Explanation

Solution

k0 = (K1K2)1/2\left( \frac{K_{1}}{K_{2}} \right)^{1/2}× k3……..(1)

k = A e –ta/RT ……..(2)

from (1) & (2)

Ae–Ea/RT = (A1eEa/RTA2eEa2/RT)1/2A3eEa3/RT\left( \frac{A_{1}e^{–Ea/RT}}{A_{2}e^{–Ea_{2}/RT}} \right)^{1/2} \cdot A_{3}e^{–Ea_{3}/RT}i.e.

Ea = 12\frac{1}{2} [Ea1 – Ea2] + Ea3