Solveeit Logo

Question

Physics Question on mechanical properties of fluid

A certain number of spherical drops of a liquid of radius rr coalesce to form a single drop of radius RR and volume VV. If TT is the surface tension of the liquid, then

A

energy = 4VT(1r1R)4VT \bigg( \frac{1}{r} - \frac{1}{R} \bigg) is released

B

energy = 3VT(1r+1R)3VT \bigg( \frac{1}{r} + \frac{1}{R} \bigg) is absorbed

C

energy = 3VT(1r1R)3VT \bigg( \frac{1}{r} - \frac{1}{R} \bigg) is released

D

energy is neither released nor absorbed.

Answer

energy = 3VT(1r1R)3VT \bigg( \frac{1}{r} - \frac{1}{R} \bigg) is released

Explanation

Solution

ΔU=(T)(ΔA)\Delta U =( T )( \Delta A )
A(A ( initial )=(4πr2)n)=\left(4 \pi r ^{2}\right) n
A(A ( final )=4πR2)=4 \pi R ^{2}
ΔA=(4πr2)n4πR2\Delta A =\left(4 \pi r ^{2}\right) n -4 \pi R ^{2}
(43πr3)n=43πR3\left(\frac{4}{3} \pi r^{3}\right) n =\frac{4}{3} \pi R ^{3}
n=R3r3n =\frac{ R ^{3}}{ r ^{3}}
ΔA=4π[R3r3r2R2]=4π[R3rR3R]=(4πR33)3[1r1R]\Delta A =4 \pi\left[\frac{ R ^{3}}{ r ^{3}} \cdot r ^{2}- R ^{2}\right]=4 \pi\left[\frac{ R ^{3}}{ r }-\frac{ R ^{3}}{ R }\right]=\left(\frac{4 \pi R ^{3}}{3}\right) 3 \left[\frac{1}{ r }-\frac{1}{ R }\right]
ΔA=3V[1r1R]\Delta A = 3 V \left[\frac{1}{ r }-\frac{1}{ R }\right]
ΔU=VVT[1r1R]\Delta U = V V T \left[\frac{1}{ r }-\frac{1}{ R }\right]