Solveeit Logo

Question

Question: A cell \(\text{Cu }|\text{ C}\text{u}^{\text{++}}\ ||\text{ A}\text{g}^{+}\ |\)Ag initially contains...

A cell Cu  Cu++  Ag+ \text{Cu }|\text{ C}\text{u}^{\text{++}}\ ||\text{ A}\text{g}^{+}\ |Ag initially contains 2M Ag+ and 2M Cu++ ions in 1L electrolyte. The change in cell potential after the passage of 10 amp current for 4825 sec is :

A

– 0.00738 V

B

– 1.00738 V

C

– 0.0038 V

D

None

Answer

– 0.00738 V

Explanation

Solution

Q = 10 × 4825 = 48250 C

no. of faraday = 4825096500=0.5\frac{48250}{96500} = 0.5

Ag+12\frac{1}{2}Cu++ \longrightarrowAg+

+ 12\frac{1}{2}Cu

2.0

2.00

20.250

Ecell=E0cell0.05911log[Ag+][Cu++]1/2E_{cel}l = {E^{0}}_{cell}\frac{0.0591}{1}\log\frac{\left\lbrack Ag^{+} \right\rbrack}{\left\lbrack Cu^{+ +} \right\rbrack^{1/2}}

E1 = E0Cell - 0.05911log log2.00(2.00)1/2E_{1}\text{ = }{\text{E}^{0}}_{\text{Cell}}\text{ - }\frac{\text{0.0591}}{1}\text{log log}\frac{\text{2.00}}{\left( \text{2.00} \right)^{1/2}}

E2=E0cell0.05911log2.50(1.75)1/2E_{2} = {E^{0}}_{cell} - \frac{0.0591}{1}\log\frac{2.50}{(1.75)^{1/2}}

Δ E = E2 - E1 = 0.05911[log2log2.501.75] = 0.05911 [log 1.41 - log 1.88] =0.05911 [0.1492 - 0.2742] = -0.05911 × 0.125 = - 0.00738 V.\Delta\text{ E = }\text{E}_{2}\text{ - }\text{E}_{1}\text{ = }\frac{\text{0.0591}}{1}\left\lbrack \text{log}\sqrt{2} - \log\frac{2.50}{\sqrt{1.75}} \right\rbrack\text{ = }\frac{\text{0.0591}}{1}\ \lbrack\text{log 1.41 - log 1.88}\rbrack\ = \frac{\text{0.0591}}{1}\text{ }\lbrack\text{0.1492 - 0.2742}\rbrack\text{ = -}\frac{\text{0.0591}}{1}\text{ }\text{×}\text{ 0.125 = - 0.00738 V.}