Solveeit Logo

Question

Physics Question on Current electricity

A cell of constant emf first connected to a resistance R1{{R}_{1}} and then connected to a resistance R2{{R}_{2}} . If power delivered in both cases is same, then the internal resistance of the cell is

A

R1R2\sqrt{{{R}_{1}}{{R}_{2}}}

B

R1R2\sqrt{\frac{{{R}_{1}}}{{{R}_{2}}}}

C

R1R22\frac{{{R}_{1}}-{{R}_{2}}}{2}

D

R1+R22\frac{{{R}_{1}}+{{R}_{2}}}{2}

Answer

R1R2\sqrt{{{R}_{1}}{{R}_{2}}}

Explanation

Solution

Current given by cell I=ER+rI=\frac{E}{R+r} Power delivered in second case P2=I2R2{{P}_{2}}={{I}^{2}}{{R}_{2}} =(ER2+r)2R2={{\left( \frac{E}{{{R}_{2}}+r} \right)}^{2}}{{R}_{2}} Power delivered is same in the both cases (ER2+r)2R1=(ER2+r)2{{\left( \frac{E}{{{R}_{2}}+r} \right)}^{2}}{{R}_{1}}={{\left( \frac{E}{{{R}_{2}}+r} \right)}^{2}} R1(R22+r2+2R2r)=R2(R12r2+r22R1r){{R}_{1}}(R_{2}^{2}+{{r}^{2}}+2{{R}_{2}}r)={{R}_{2}}(R_{1}^{2}{{r}^{2}}+{{r}^{2}}2{{R}_{1}}r) R1R22+R1r2+2R1R2r=R2R12r2+R2r2+2R1R2r{{R}_{1}}R_{2}^{2}+{{R}_{1}}{{r}^{2}}+2{{R}_{1}}{{R}_{2}}r={{R}_{2}}R_{1}^{2}{{r}^{2}}+{{R}_{2}}{{r}^{2}}+2{{R}_{1}}{{R}_{2}}r R1R22R2R12=R2R2R1r2{{R}_{1}}R_{2}^{2}-{{R}_{2}}R_{1}^{2}={{R}_{2}}{{R}^{2}}-{{R}_{1}}{{r}^{2}} R1R2(R2R1)=R2r2R1r2{{R}_{1}}{{R}_{2}}({{R}_{2}}-{{R}_{1}})={{R}_{2}}{{r}^{2}}-{{R}_{1}}{{r}^{2}} r=R1R2r=\sqrt{{{R}_{1}}{{R}_{2}}}