Solveeit Logo

Question

Physics Question on carnot cycle

A Carnot engine operating between temperatures T1T_1 and T2T_2 has efficiency 0.20.2. When T2T_2 is reduced by 50K50\, K, its efficiency increases to 0.40.4. Then T1T_1 and T2T_2 are respectively

A

200 K, 150 K

B

250 K, 200 K

C

300 K, 250 K

D

300 K, 200 K

Answer

250 K, 200 K

Explanation

Solution

By Carnot's ideal heat engine
η=1T2T1\eta=1-\frac{T_{2}}{T_{1}}
where η1=0.2,η2=0.4\eta_{1}=0.2, \eta_{2}=0.4
For the first condition
η1=1T2T1\eta_{1} =1-\frac{T_{2}}{T_{1}}
0.2=1T2T10.2 =1-\frac{T_{2}}{T_{1}}
or 0.2=T1T2T1...(i)0.2=\frac{T_{1}-T_{2}}{T_{1}}\,...(i)
For the second condition
η2=1T250T1\eta_{2}=1-\frac{T_{2}-50}{T_{1}}
0.4=T1(T250)T10.4=\frac{T_{1}-\left(T_{2}-50\right)}{T_{1}}
0.4=T1T2+50T10.4=\frac{T_{1}-T_{2}+50}{T_{1}}
0.4=T1T2T1+50T10.4=\frac{T_{1}-T_{2}}{T_{1}}+\frac{50}{T_{1}}
0.4=0.2+50T10.4=0.2+\frac{50}{T_{1}} [From E(i)]
0.40.2=50T10.4-0.2=\frac{50}{T_{1}}
T1=500.2T_{1}=\frac{50}{0.2}
T1=250KT_{1}=250\, K
Putting the value of T1T_{1} in E (i), we get
0.2=T1T2T10.2=\frac{T_{1}-T_{2}}{T_{1}}
T2=T10.2T1T_{2} =T_{1}-0.2 T_{1}
T2=2500.2×250T_{2} =250-0.2 \times 250
T2=25050T_{2} =250-50
T2=200KT_{2} =200\, K
So T1=250K,T2=200KT_{1} =250 \,K , T_{2}=200\, K