Solveeit Logo

Question

Physics Question on Motion in a straight line

A car starts from rest, moves with an acceleration aa and then decelerates at aa constant rate bb for sometimes to come to rest. If the total time taken is tt. The maximum velocity of car is given by :

A

abt(a+b)\frac{abt}{(a+ b)}

B

a2ta+b\frac{a^{2}t}{a +b}

C

at(a+b)\frac{at}{(a +b)}

D

b2ta+b\frac{b^{2}t}{a +b}

Answer

abt(a+b)\frac{abt}{(a+ b)}

Explanation

Solution

Let car accelerates for time t1t_{1} and decelerates for time t2t_{2} then
t1+t2=tt_{1}+t_{2}=t ..(1)
From v=u+atv=u +at
v=u+at1v=u+ at_{1}
v=at1\Rightarrow v=at_{1}
For deceleration
v=uatv =u-a t
0=at1bt2(u=v)0 =a t_{1}-b t_{2}\,\,(\because u= v)
at1=bt2a t_{1} =b t_{2}
t2=at1b\Rightarrow t_{2} =\frac{a t_{1}}{b}
t1+at1b=1\therefore t_{1}+\frac{a t_{1}}{b} =1 [From E (1)]
t1(1+ab)=t\Rightarrow t_{1}\left(1+\frac{a}{b}\right)=t
t1=bta+b\Rightarrow t_{1}=\frac{b t}{a +b}
\therefore Maximum velocity of car
v=at1=abta+bv=a t_{1}=\frac{a b t}{a +b}