Solveeit Logo

Question

Physics Question on Motion in a straight line

A car, starting from rest, accelerates at the rate ff through a distance SS, then continues at constant speed for time tt and then decelerates as the rate f/2f / 2 to come to rest. If the total distance travelled is 15S15 S, then

A

S=ftS=ft

B

S=16ft2S = \frac{1}{6} ft^2

C

S=172ft2S = \frac{1}{72} ft^2

D

S=14ft2S = \frac{1}{4} ft^2

Answer

S=172ft2S = \frac{1}{72} ft^2

Explanation

Solution

The velocity-time graph for the given situation can be drawn as below. Magnitudes of slope of OA=fO A=f and slope of BC=f2B C=\frac{f}{2} v=ft1=f2t2v=f t_{1}=\frac{f}{2} t_{2} t2=2t1\therefore t_{2}=2 t_{1} In graph area of OAD\triangle O A D gives distances, S=12ft12 S=\frac{1}{2} f t_{1}^{2} ... (i) Area of rectangle ABEDA B E D gives distance travelled in time tt. S2=(ft1)tS_{2}=\left(f t_{1}\right) t Distance travelled in time t2t_{2} =S3=12f2(2t1)2=S_{3}=\frac{1}{2} f_{2}\left(2 t_{1}\right)^{2} Thus, S1+S2+S3=15S S_{1}+S_{2}+S_{3}=15 S S+(ft1)t+ft12=15SS+\left(f t_{1}\right) t+f t_{1}^{2}=15 S S+(ft1)t+2S=15S(S=12ft12)S+\left(f t_{1}\right) t+2 S =15 S \left(S=\frac{1}{2} f t_{1}^{2}\right) (ft1)t=12S\left(f t_{1}\right) t =12 S ... (ii) From Eqs. (i) and (ii), we have 12SS=(ft1)t12(ft1)t1\frac{12 S}{S}=\frac{\left(f t_{1}\right) t}{\frac{1}{2}\left(f t_{1}\right) t_{1}} t1=t6t_{1}=\frac{t}{6} From E (i), we get S=12f(t1)2\therefore S=\frac{1}{2} f\left(t_{1}\right)^{2} S=12f(t6)2=172ft2S=\frac{1}{2} f\left(\frac{t}{6}\right)^{2}=\frac{1}{72} f t^{2}