Solveeit Logo

Question

Physics Question on Motion in a plane

A car of mass m moves in a horizontal circular path of radius rmr\,m. At an instant its speed is v ms1ms^{ - 1 } and is increasing at a rate of a ms2 ms^{ - 2} . Then the acceleration of the car is

A

v2r\frac{ v^2 }{ r }

B

a

C

a2+(v2r)2\sqrt{ a^2 + \bigg( \frac{ v^2 }{ r } \bigg)^2 }

D

u+v2r\sqrt{ u + \frac{ v^2 }{ r }}

Answer

a2+(v2r)2\sqrt{ a^2 + \bigg( \frac{ v^2 }{ r } \bigg)^2 }

Explanation

Solution

Radial acceleration ar=v2ra_r = \frac{v^2 }{ r } Tangential acceleration ata_t = a \therefore Resultant acceleration a=ar2+at2+2aratcosθa' = \sqrt{ a_r^2 + a_t^2 + 2 a_r a_t \, \cos \, \theta } But here θ=90\theta = 90^\circ cosθ=cos90=0\therefore cos \, \theta = \cos \, 90^\circ = 0 and a' = ar2+at2=a2+(v2r)2\sqrt{ a_r^2 + a_t^2 } = \sqrt{ a^2 + \bigg( \frac{ v^2 }{ r } \bigg)^2 }