Solveeit Logo

Question

Physics Question on laws of motion

A car of mass mm moves in a horizontal circular path of radius rmr \,m. At an instant its speed is vm/sv \,m/s and is increasing at a rate of am/s2a\,m/{{s}^{2}} . Then the acceleration of the car is

A

v2r\frac{{{v}^{2}}}{r}

B

aa

C

a2+(v2r)2\sqrt{{{a}^{2}}+{{\left( \frac{{{v}^{2}}}{r} \right)}^{2}}}

D

u+v2r\sqrt{u+\frac{{{v}^{2}}}{r}}

Answer

a2+(v2r)2\sqrt{{{a}^{2}}+{{\left( \frac{{{v}^{2}}}{r} \right)}^{2}}}

Explanation

Solution

Radial acceleration ar=v2r{{a}_{r}}=\frac{{{v}^{2}}}{r} Tangential acceleration at=a{{a}_{t}}=a \therefore Resultant acceleration a=ar2+at2+2aratcosθa'=\sqrt{a_{r}^{2}+a_{t}^{2}+2{{a}_{r}}{{a}_{t}}\cos \theta } But here θ=90\theta =90{}^\circ \therefore cosθ=cos90=0\cos \theta =\cos 90{}^\circ =0 and a=ar2+at2=(v2r)2+a2a'=\sqrt{a_{r}^{2}+a_{t}^{2}}=\sqrt{{{\left( \frac{{{v}^{2}}}{r} \right)}^{2}}+{{a}^{2}}}