Solveeit Logo

Question

Question: A car of mass 1000 kg moving with a speed \(18 \mathrm { kmh } ^ { - 1 }\) on a smooth road and col...

A car of mass 1000 kg moving with a speed 18kmh118 \mathrm { kmh } ^ { - 1 } on a smooth road and colliding with a horizontally mounted spring of spring constant6.25×103Nm16.25 \times 10 ^ { 3 } \mathrm { Nm } ^ { - 1 }. The maximum compression of the spring is:

A

1 m

B

2 m

C

3 m

D

4 m

Answer

2 m

Explanation

Solution

Here,

m=1000 kg,v=18 km h1=18×518 ms1=5 ms1\mathrm { m } = 1000 \mathrm {~kg} , \mathrm { v } = 18 \mathrm {~km} \mathrm {~h} ^ { - 1 } = 18 \times \frac { 5 } { 18 } \mathrm {~ms} ^ { - 1 } = 5 \mathrm {~ms} ^ { - 1 }

k=6.25×103Nm1\mathrm { k } = 6.25 \times 10 ^ { 3 } \mathrm { Nm } ^ { - 1 }

At maximum compression xm\mathbf { x } _ { \mathrm { m } } the kinetic energy of the car is converted entirely into the potential energy of the spring.

12mv2=12kxm2\therefore \frac { 1 } { 2 } \mathrm { mv } ^ { 2 } = \frac { 1 } { 2 } \mathrm { kx } _ { \mathrm { m } } ^ { 2 } or xm=mkv\mathrm { x } _ { \mathrm { m } } = \sqrt { \frac { \mathrm { m } } { \mathrm { k } } } \mathrm { v }

Substituting the given values, we get

= 0.4 × 5 m = 2 m