Solveeit Logo

Question

Physics Question on Uniform Circular Motion

A car of 800 kg is taking a turn on a banked road of radius 300 m and angle of banking 30°. If the coefficient of static friction is 0.2, then the maximum speed with which the car can negotiate the turn safely: (Given g=10m/s2g = 10 \, \text{m/s}^2, 3=1.73\sqrt{3} = 1.73).

A

70.4 m/s

B

51.4 m/s

C

264 m/s

D

102.8 m/s

Answer

51.4 m/s

Explanation

Solution

Given:
m=800kg,r=300m,θ=30,μ=0.2m = 800 \, \text{kg}, \quad r = 300 \, \text{m}, \quad \theta = 30^\circ, \quad \mu = 0.2
The maximum speed VmaxV_{\text{max}} for safe negotiation of the turn is given by:
Vmax=rgtanθ+μ1μtanθV_{\text{max}} = \sqrt{r g \frac{\tan \theta + \mu}{1 - \mu \tan \theta}}
Substitute the values:
Vmax=300×10×tan30+0.210.2×tan30V_{\text{max}} = \sqrt{300 \times 10 \times \frac{\tan 30^\circ + 0.2}{1 - 0.2 \times \tan 30^\circ}}
=300×10×0.57+0.210.2×0.57= \sqrt{300 \times 10 \times \frac{0.57 + 0.2}{1 - 0.2 \times 0.57}}
=3000×0.770.886= \sqrt{3000 \times \frac{0.77}{0.886}}
3636
Vmax=51.4m/sV_{\text{max}} = 51.4 \, \text{m/s}