Solveeit Logo

Question

Question: A car moves with a speed of \[40\text{ km/h}\] for \[\text{15}\] minutes and then with a speed of \[...

A car moves with a speed of 40 km/h40\text{ km/h} for 15\text{15} minutes and then with a speed of 60 km/h60\text{ km/h} for the next 15\text{15} minutes. The total distance covered by the car is:
A. 3535
B. 2525
C. 4545
D. 6666

Explanation

Solution

The distance d covered by a body, moving with speed s, in time t is given by d=s×td=s\times t

Complete step by step solution:
Let d1{{d}_{1}} distance be covered in the first 15\text{15} minutes when the car travels with a speed s1{{s}_{1}} (say).
The speed of the car for the first 15\text{15} minutes is 40 km/h40\text{ km/h}, so s1=40 km/h{{s}_{1}}=40\text{ km/h}
Convert the speed from km/h to metre per second using the conversion ratio 1 km/h=1000 3600 m/s1\text{ km/h}=\dfrac{1000\text{ }}{3600\text{ }}\text{m/s}
Therefore,
s1=40 km/h=40×1000 3600  m/s s1=11.11 m/s  {{s}_{1}}=40\text{ km/h}=40\times \dfrac{1000\text{ }}{3600\text{ }}\text{ m/s} \\\ {{s}_{1}}=11.11\text{ m/s} \\\
Substituting s1=11.11 m/s{{s}_{1}}=11.11\text{ m/s} and t1=15 min×60 s=900 s{{t}_{1}}\text{=15 min}\times 60\text{ s}=900\text{ s} in the distance formula, the distance covered in first 15\text{15} minutes is
d1=s1×t1     d1=11.11 m/s×900 s     d1=9999 m     d110 km  {{d}_{1}}={{s}_{1}}\times {{t}_{1}} \\\ \implies {{d}_{1}}=11.11\text{ m/s}\times \text{900 s} \\\ \implies {{d}_{1}}=9999\text{ m} \\\ \implies {{d}_{1}}\cong 10\text{ km} \\\

Let d2{{d}_{2}} distance be covered in the next 15\text{15} minutes when the car travels with a speed s2{{s}_{2}} (say).
Now, the speed of the car for the next 15\text{15} minutes is 60 km/h60\text{ km/h}, so s2=60 km/h{{s}_{2}}=60\text{ km/h}
Convert the speed from km/h to metre per second using the conversion ratio 1 km/h=1000 3600 m/s1\text{ km/h}=\dfrac{1000\text{ }}{3600\text{ }}\text{m/s}
s2=60 km/h=60×1000 3600  m/s s2=16.67 m/s  {{s}_{2}}=60\text{ km/h}=60\times \dfrac{1000\text{ }}{3600\text{ }}\text{ m/s} \\\ {{s}_{2}}=16.67\text{ m/s} \\\
Substituting s2=16.67 m/s{{s}_{2}}=16.67\text{ m/s} and t2=15 min×60 s=900 s{{t}_{2}}\text{=15 min}\times 60\text{ s}=900\text{ s} in the distance formula, the distance covered in next 15\text{15} minutes is
d2=s2×t2     d2=16.67 m/s×15 min     d2=16.67 m/s×900 s     d2=15003 m     d215.0 km  {{d}_{2}}={{s}_{2}}\times {{t}_{2}} \\\ \implies {{d}_{2}}=16.67\text{ m/s}\times \text{15 min} \\\ \implies {{d}_{2}}=16.67\text{ m/s}\times \text{900 s} \\\ \implies {{d}_{2}}=15003\text{ m} \\\ \implies {{d}_{2}}\cong 15.0\text{ km} \\\
Therefore total distance travelled by the car in 30\text{30} minutes is
d=d1+d2     d=10 km+15 km d=25 km  d={{d}_{1}}+{{d}_{2}} \\\ \implies d=10\text{ km}+15\text{ km} \\\ \therefore d=25\text{ km} \\\

So, the total distance travelled by the car is 25 km25\text{ km}.

Therefore, option B is the correct answer.

Additional information: As the speed increases after the first fifteen minutes, the car is accelerating.

Note: It is important that the distance, speed and time be in the same system of units, preferably the S.I. unit system.
The problem can also be solved by plotting a speed-time graph. Either convert speed into m/s and time into seconds, or convert only time into hours and plot the speed-time graph. Take the car to be initially at rest.