Solveeit Logo

Question

Question: A car is moving along a straight horizontal road with a speed \(v _ { 0 }\) . If the coefficient of...

A car is moving along a straight horizontal road with a speed v0v _ { 0 } . If the coefficient of friction between the tyres and the road is μ\mu , the shortest distance in which the car can be stopped is

A

v022μg\frac { v _ { 0 } ^ { 2 } } { 2 \mu g }

B

v0μg\frac { v _ { 0 } } { \mu g }

C

(v0μg)2\left( \frac { v _ { 0 } } { \mu g } \right) ^ { 2 }

D

v0μ\frac { v _ { 0 } } { \mu }

Answer

v022μg\frac { v _ { 0 } ^ { 2 } } { 2 \mu g }

Explanation

Solution

Retarding force F=ma=μR=μmgF = m a = \mu R = \mu m g

\therefore a=μga = \mu g

Now from equation of motion

v2=u22asv ^ { 2 } = u ^ { 2 } - 2 a s

0=u22as\Rightarrow 0 = u ^ { 2 } - 2 a ss=u22a=u22μgs = \frac { u ^ { 2 } } { 2 a } = \frac { u ^ { 2 } } { 2 \mu g } \therefore =v022μg= \frac { v _ { 0 } ^ { 2 } } { 2 \mu g }