Solveeit Logo

Question

Question: A capillary tube of radius r is dipped in a liquid of density ρ and surface tension S. If the angle ...

A capillary tube of radius r is dipped in a liquid of density ρ and surface tension S. If the angle of contact is θ, the pressure difference between the two surfaces in the beaker and the capillary

A

Srcosθ\frac { S } { r } \cos \theta

B

2Srcosθ\frac { 2 S } { r } \cos \theta

C

Srcosθ\frac { S } { r \cos \theta }

D

2Srcosθ\frac { 2 S } { r \cos \theta }

Answer

2Srcosθ\frac { 2 S } { r } \cos \theta

Explanation

Solution

S=rhdg2cosθS = \frac { r h d g } { 2 \cos \theta } \RightarrowPressure difference

=hdg=2Srcosθ= h d g = \frac { 2 S } { r } \cos \theta