Solveeit Logo

Question

Question: A capillary tube is made of glass with the index of refraction 3, outer radius of the tube is 30 cm....

A capillary tube is made of glass with the index of refraction 3, outer radius of the tube is 30 cm. The tube is filled with a liquid with the index of refraction 2. What should be the minimum internal radius of the tube r so that any ray that hits the tube would enter the liquid –

A

15 cm

B

10 cm

C

20 cm

D

45 cm

Answer

15 cm

Explanation

Solution

q < q c

sinq < sinqc

sin q < μ1μ2\frac { \mu _ { 1 } } { \mu _ { 2 } }

sinq < 23\frac { 2 } { 3 }

when i is maximum q is also max and if

sinqmax < 23\frac { 2 } { 3 } light will enter in liquid.

imax = π2\frac { \pi } { 2 } sin f = 1μ2\frac { 1 } { \mu _ { 2 } } = 13\frac { 1 } { 3 }

Apply sine rule = sin(πθ)R\frac { \sin ( \pi - \theta ) } { R } = sinθR\frac { \sin \theta } { \mathrm { R } }

sinϕr\frac { \sin \phi } { r } =

R3r\frac { R } { 3 r } = sinq < 23\frac { 2 } { 3 } r > r > 302\frac { 30 } { 2 } r > 15 cm

minimum radius = 15 cm