Solveeit Logo

Question

Question: A capillary tube is attached horizontally to a constant head arrangement. If the radius of the capil...

A capillary tube is attached horizontally to a constant head arrangement. If the radius of the capillary tube is increased by 10% then the rate of flow of liquid will change nearly by

A

(a) + 10%

A

(b) + 46%

A

(c) – 10%

A

(d) – 40%

Explanation

Solution

(b)

V=Pπr48ηlV = \frac{P\pi r^{4}}{8\eta l}

V2V1=(r2r1)4\frac{V_{2}}{V_{1}} = \left( \frac{r_{2}}{r_{1}} \right)^{4}

V2=V1(110100)4=V1(1.1)4=1.4641V\mathbf{V}_{\mathbf{2}}\mathbf{=}\mathbf{V}_{\mathbf{1}}\left( \frac{\mathbf{110}}{\mathbf{100}} \right)^{\mathbf{4}}\mathbf{=}\mathbf{V}_{\mathbf{1}}\mathbf{(1.1}\mathbf{)}^{\mathbf{4}}\mathbf{= 1.4641V}

ΔVV=V2V1V=1.4641VVV=0.466mu6mu6muor6mu6mu6mu46%\frac{\Delta V}{V} = \frac{V_{2} - V_{1}}{V} = \frac{1.4641V - V}{V} = 0.46\mspace{6mu}\mspace{6mu}\mspace{6mu}\text{or}\mspace{6mu}\mspace{6mu}\mspace{6mu} 46\%.