Solveeit Logo

Question

Physics Question on Alternating current

A capacitor of reactance 43Ω4 \sqrt{3} \, \Omega and a resistor of resistance 4Ω4 \, \Omega are connected in series with an AC source of peak value 82V8 \sqrt{2} \, \text{V}. The power dissipation in the circuit is ___________ W.

Answer

The impedance ZZ of the circuit is:
Z=R2+XC2=42+(43)2=16+48=64=8Ω.Z = \sqrt{R^2 + X_C^2} = \sqrt{4^2 + (4\sqrt{3})^2} = \sqrt{16 + 48} = \sqrt{64} = 8 \, \Omega.

The RMS voltage is:
Vrms=Vpeak2=822=8V.V_\text{rms} = \frac{V_\text{peak}}{\sqrt{2}} = \frac{8\sqrt{2}}{\sqrt{2}} = 8 \, \text{V}.
The RMS current is: Irms=VrmsZ=88=1A.I_\text{rms} = \frac{V_\text{rms}}{Z} = \frac{8}{8} = 1 \, \text{A}.
Power dissipation in the resistor is: P=Irms2R=12×4=4W.P = I_\text{rms}^2 R = 1^2 \times 4 = 4 \, \text{W}.

Explanation

Solution

The impedance ZZ of the circuit is:
Z=R2+XC2=42+(43)2=16+48=64=8Ω.Z = \sqrt{R^2 + X_C^2} = \sqrt{4^2 + (4\sqrt{3})^2} = \sqrt{16 + 48} = \sqrt{64} = 8 \, \Omega.

The RMS voltage is:
Vrms=Vpeak2=822=8V.V_\text{rms} = \frac{V_\text{peak}}{\sqrt{2}} = \frac{8\sqrt{2}}{\sqrt{2}} = 8 \, \text{V}.
The RMS current is: Irms=VrmsZ=88=1A.I_\text{rms} = \frac{V_\text{rms}}{Z} = \frac{8}{8} = 1 \, \text{A}.
Power dissipation in the resistor is: P=Irms2R=12×4=4W.P = I_\text{rms}^2 R = 1^2 \times 4 = 4 \, \text{W}.