Solveeit Logo

Question

Physics Question on electrostatic potential and capacitance

A capacitor of capacity C1=3.5μFC_{1}=3.5 \,\mu F is charged to a potential difference V0=6.0VV_{0}=6.0\, V using a battery. The battery is then removed and the capacitor connected using a switch SS, as shown in the figure, to an uncharged capacitor of capacity C2=6.5μFC_{2}=6.5 \,\mu F. The total final energy of the two capacitors after they are connected together then the charges q1\left|q_{1}\right| and q2\left|q_{2}\right| on the capacitors shall be

A

63μj,q1=7.35μC63 \,\mu j,\left|q_{1}\right|=7.35 \,\mu C and q2=13.65μC\left|q_{2}\right|=13.65\, \mu C

B

22μj,q1=10.5μC22\,\mu j,\left|q_{1}\right|= 10.5 \,\mu C and q2=10.5μC\left|q_{2}\right|=10.5\, \mu C

C

22μj,q1=7.35μC22\,\mu j,\left|q_{1}\right|= 7.35 \,\mu C and q2=13.65μC\left|q_{2}\right|=13.65\, \mu C

D

22μj,q1=13.65μC22\,\mu j,\left|q_{1}\right|= 13.65 \,\mu C and q2=7.35μC\left|q_{2}\right|=7.35\, \mu C

Answer

22μj,q1=7.35μC22\,\mu j,\left|q_{1}\right|= 7.35 \,\mu C and q2=13.65μC\left|q_{2}\right|=13.65\, \mu C

Explanation

Solution

V=C1V1+C2V2C1+C2V=\frac{C_{1} V_{1}+C_{2} V_{2}}{C_{1}+C_{2}}
=3.5×6+010v=\frac{3.5 \times 6+0}{10} v
=2.1V=2.1 \,V
q1=2.1×3.5q_{1}=2.1 \times 3.5
q1=7.35μCq_{1}=7.35\, \mu C
q2=C2V=6.5×106×2.1q_{2}=C_{2} V=6.5 \times 10^{-6} \times 2.1
and U=12CV2U=\frac{1}{2} C V^{2}
=12×10(2.1)2==\frac{1}{2} \times 10(2.1)^{2}=
22.01=22μJ22.01=22\, \mu J